Suppr超能文献

确定性和随机传染病模型中的灭绝阈值。

Extinction thresholds in deterministic and stochastic epidemic models.

机构信息

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409-1042, USA.

出版信息

J Biol Dyn. 2012;6:590-611. doi: 10.1080/17513758.2012.665502.

Abstract

The basic reproduction number, ℛ(0), one of the most well-known thresholds in deterministic epidemic theory, predicts a disease outbreak if ℛ(0)>1. In stochastic epidemic theory, there are also thresholds that predict a major outbreak. In the case of a single infectious group, if ℛ(0)>1 and i infectious individuals are introduced into a susceptible population, then the probability of a major outbreak is approximately 1-(1/ℛ(0))( i ). With multiple infectious groups from which the disease could emerge, this result no longer holds. Stochastic thresholds for multiple groups depend on the number of individuals within each group, i ( j ), j=1, …, n, and on the probability of disease extinction for each group, q ( j ). It follows from multitype branching processes that the probability of a major outbreak is approximately [Formula: see text]. In this investigation, we summarize some of the deterministic and stochastic threshold theory, illustrate how to calculate the stochastic thresholds, and derive some new relationships between the deterministic and stochastic thresholds.

摘要

基本繁殖数 ℛ(0) 是确定性传染病理论中最著名的阈值之一,如果 ℛ(0)>1 ,则预示着疾病的爆发。在随机传染病理论中,也存在着预测大爆发的阈值。在单个感染组的情况下,如果 ℛ(0)>1 且有 i 个感染者被引入易感人群,则大爆发的概率约为 1-(1/ℛ(0))( i )。如果有多个可能引发疾病的感染组,那么这个结果就不再成立。多组的随机阈值取决于每个组内的个体数量 i ( j ), j=1 ,…, n ,以及每个组的疾病灭绝概率 q ( j )。从多类型分支过程中可以得出,大爆发的概率约为[公式:见文本]。在本研究中,我们总结了一些确定性和随机性阈值理论,说明了如何计算随机性阈值,并推导出了确定性和随机性阈值之间的一些新关系。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验