Suppr超能文献

那么,你认为你了解互变异构现象吗?

So you think you understand tautomerism?

机构信息

NextMove Software, 1303 Bartlet Court, Santa Fe, NM 87501, USA.

出版信息

J Comput Aided Mol Des. 2010 Jun;24(6-7):485-96. doi: 10.1007/s10822-010-9329-5. Epub 2010 Mar 23.

Abstract

It appears so simple at first glance, "tautomers are isomers of organic compounds that readily interconvert, usually by the migration of hydrogen from one atom to another". If a chemist can describe the problem so succinctly, one might question why the complication of tautomerism remains a considerable challenge to cheminformatics and computer-assisted drug design. With a half-century of experience with representing molecules in computers, and almost limitless modern computational power, the problem should have been solved by now. The unfortunate answer is that the frustration and inconvenience of a database search failing to find matches due to differences in the tautomeric forms of the query and registered compounds is but the tip of an iceberg. Prototropic tautomerism, the movement of hydrogens around a molecule, is but just one aspect of an interconnected web of complications. These include mesomerism, aromaticity, protonation state, stereochemistry, conformation, polymerization, photostability, hydrolysis, metabolism and EOCWR (explodes on contact with reality). The common theme is that valence theory, which underlies all modern chemical informatics systems, is an approximate theoretical model for representing molecules mathematically, and, as with all models, it has limitations and domains of applicability. In the physical environments that chemists care about, small organic molecules are often dynamic, existing in multiple equivalent or interconvertible forms. A single connection table can at best represent a snapshot or sample from these populations. Although partial algorithmic solutions exist for handling the most common cases of tautomerism, this perspective hopes to argue that the underlying problems perhaps make tautomerism more complex than it might first appear.

摘要

乍一看似乎很简单,“互变异构体是可以相互转化的有机化合物的异构体,通常通过氢从一个原子迁移到另一个原子来实现”。如果化学家能够如此简洁地描述问题,人们可能会质疑为什么互变异构体的复杂性仍然是化学生信学和计算机辅助药物设计的一个重大挑战。有了半个世纪在计算机中表示分子的经验,以及几乎无限的现代计算能力,这个问题现在应该已经解决了。不幸的是,答案是,由于查询和注册化合物的互变异构形式的差异,数据库搜索未能找到匹配,这给人们带来了挫折和不便,而这仅仅是冰山一角。质子转移互变异构,即氢在分子周围的移动,只是一个相互关联的复杂网络的一个方面。这些包括中介效应、芳香性、质子化状态、立体化学、构象、聚合、光稳定性、水解、代谢和 EOCWR(与现实接触时爆炸)。共同的主题是,价理论是所有现代化学信息学系统的基础,它是一种用于数学表示分子的近似理论模型,并且与所有模型一样,它具有局限性和适用范围。在化学家关心的物理环境中,小分子通常是动态的,存在于多种等效或可相互转化的形式中。单个连接表最多只能代表这些群体中的一个快照或样本。尽管存在处理最常见互变异构体情况的部分算法解决方案,但这种观点希望证明,潜在的问题可能使互变异构体比乍看起来更复杂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验