Petelski Andre Nicolai, Fonseca Guerra Célia
Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands.
Departamento de Ingeniería Química Grupo de Investigación en Química Teórica y Experimental (QuiTEx) Facultad Regional Resistencia Universidad Tecnológica Nacional French 414 H3500CHJ Resistencia Chaco Argentina.
ChemistryOpen. 2018 Nov 20;8(2):135-142. doi: 10.1002/open.201800210. eCollection 2019 Feb.
In supramolecular chemistry, the rational design of self-assembled systems remains a challenge. Herein, hydrogen-bonded rosettes of melamine and ammeline have been theoretically examined by using dispersion-corrected density functional theory (DFT-D). Our bonding analyses, based on quantitative Kohn-Sham molecular orbital theory and corresponding energy decomposition analyses (EDA), show that ammeline is a much better building block than melamine for the fabrication of cyclic complexes based on hydrogen bonds. This superior capacity is explained by both stronger hydrogen bonding and the occurrence of a strong synergy.
在超分子化学中,自组装体系的合理设计仍然是一项挑战。在此,通过使用色散校正密度泛函理论(DFT-D)对三聚氰胺和蜜胺形成的氢键玫瑰花结进行了理论研究。我们基于定量的Kohn-Sham分子轨道理论和相应的能量分解分析(EDA)的键合分析表明,对于基于氢键的环状配合物的构建,蜜胺比三聚氰胺是更好的构建单元。这种优越的能力可以通过更强的氢键作用和强烈协同作用的出现来解释。