Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, SSA, México DF, Mexico.
Neurochem Int. 2010 May-Jun;56(6-7):834-42. doi: 10.1016/j.neuint.2010.03.008. Epub 2010 Mar 21.
Metabolic alterations in the nervous system can be produced at early stages of toxicity and are linked with oxidative stress, energy depletion and death signaling. Proteases activation is responsible for triggering deadly cascades during cell damage in toxic models. In this study we evaluated the early time-course of toxic events (oxidative damage to lipids, mitochondrial dysfunction and LDH leakage, all at 1, 3 and 6h) in rat striatal slices exposed to quinolinic acid (QUIN, 100 microM) as an excitotoxic/pro-oxidant model, 3-nitropropionic acid (3-NP, 1mM) as an inhibitor of mitochondrial succinate dehydrogenase, and a combined model produced by the co-administration of these two toxins at subtoxic concentrations (21 and 166 microM for QUIN and 3-NP, respectively). In order to further characterize a possible causality of caspases or calpains on the toxic mechanisms produced in these models, the broad calpain inhibitor IC1 (50 microM), and the pan-caspase inhibitor Z-VAD (100 microM) were tested. Lipid peroxidation (LP) was increased at all times and in all models evaluated. Both IC1 and Z-VAD exerted significant protection against LP in all models and at all times evaluated. Mitochondrial dysfunction (MD) was consistently affected by all toxic models at 3 and 6h, but was mostly affected by 3-NP and QUIN at 1h. IC1 differentially protected the slices against 3-NP and QUIN at 1h and against QUIN at 3h, while Z-VAD exhibited positive actions against QUIN and 3-NP at all times tested, and against their combination at 3 and 6h. LDH leakage was enhanced at 1 and 3h in all toxic models, but this effect was evident only for 3-NP + QUIN and 3-NP at 6h. IC1 protected against LDH leakage at 1h in 3-NP + QUIN and 3-NP models, at 3h in all toxic models, and at 6h in 3-NP + QUIN and 3-NP models. In turn, Z-VAD protected at 1 and 6h in all models tested, and at 3h in the combined and QUIN models. Our results suggest differential chronologic and mechanistic patterns, depending on the toxic insult. Although LP, MD and membrane cell rupture are shared by the three models, the occurrence of each event seems to obey to a selective recruitment of damaging signals, including a differential activation of proteases in time. Proteases activation is likely to be an up-stream event influencing oxidative stress and mitochondrial dysfunction in these toxic models.
神经系统的代谢改变可在毒性的早期阶段产生,并与氧化应激、能量耗竭和死亡信号有关。蛋白酶的激活负责在毒性模型的细胞损伤过程中引发致命级联反应。在这项研究中,我们评估了暴露于喹啉酸 (QUIN,100μM) 作为兴奋性/氧化剂模型、3-硝基丙酸 (3-NP,1mM) 作为线粒体琥珀酸脱氢酶抑制剂以及这两种毒素在亚毒性浓度下共同给药产生的联合模型的早期毒性事件(脂质氧化损伤、线粒体功能障碍和 LDH 渗漏,均在 1、3 和 6 小时)的时程 。(分别为 QUIN 和 3-NP 的 21 和 166μM)。为了进一步表征在这些模型中产生的细胞毒性机制中 caspase 或钙蛋白酶的因果关系,我们测试了广谱钙蛋白酶抑制剂 IC1(50μM)和泛半胱天冬酶抑制剂 Z-VAD(100μM)。所有模型在所有时间点的脂质过氧化 (LP) 均增加。IC1 和 Z-VAD 在所有模型和所有评估时间都对 LP 表现出显著的保护作用。线粒体功能障碍 (MD) 在所有毒性模型中均在 3 和 6 小时受到影响,但在 1 小时时主要受到 3-NP 和 QUIN 的影响。IC1 对 1 小时时的 3-NP 和 QUIN 以及 3 小时时的 QUIN 表现出不同的保护作用,而 Z-VAD 在所有测试时间均对 QUIN 和 3-NP 表现出积极作用,对其组合在 3 和 6 小时时也表现出积极作用。在所有毒性模型中,LDH 渗漏在 1 和 3 小时均增强,但仅在 3-NP+QUIN 和 3-NP 时在 6 小时时明显。IC1 在 3-NP+QUIN 和 3-NP 模型中保护 1 小时时的 LDH 渗漏,在所有毒性模型中保护 3 小时时的 LDH 渗漏,在 3-NP+QUIN 和 3-NP 模型中保护 6 小时时的 LDH 渗漏。相反,Z-VAD 在所有测试模型中在 1 和 6 小时时保护,在联合和 QUIN 模型中在 3 小时时保护。我们的结果表明,根据毒性损伤,存在不同的时间和机制模式。虽然这三种模型都存在 LP、MD 和细胞膜破裂,但每个事件的发生似乎都遵循破坏性信号的选择性募集,包括蛋白酶在时间上的差异激活。蛋白酶的激活可能是影响这些毒性模型中氧化应激和线粒体功能障碍的上游事件。