Suppr超能文献

双随机奈曼A型和托马斯计数分布在光子探测中的作用。

Role of the doubly stochastic Neyman type-A and Thomas counting distributions in photon detection.

作者信息

Teich M C

出版信息

Appl Opt. 1981 Jul 15;20(14):2457-67. doi: 10.1364/AO.20.002457.

Abstract

The Neyman type-A and Thomas counting distributions provide a useful description for a broad variety of phenomena from the distribution of larvas on small plots of land to the distribution of galaxies in space. They turn out to provide a good description for the counting of photons generated by multiplied Poisson processes, as long as the time course of the multiplication is short compared with the counting time. Analytic expressions are presented for the probability distributions, moment generating functions, moments, and variance-to-mean ratios. Sums of Neyman type-A and Thomas random variables are shown to retain their form under the constraint of constant multiplication parameter. Conditions under which the Neyman type-A and Thomas converge in distribution to the fixed multiplicative Poisson and to the Gaussian are presented. This latter result is most important for it provides a ready solution to likelihood-ratio detection, estimation, and discrimination problems in the presence of many kinds of signal and noise. The doubly stochastic Neyman type-A, Thomas, and fixed multiplicative Poisson distributions are also considered. A number of explicit applications are presented. These include (1) the photon counting scintillation detection of nuclear particles, when the particle flux is low, (2) the photon counting detection of weak optical signals in the presence of ionizing radiation, (3) the design of a star-scanner spacecraft guidance system for the hostile environment of space, (4) the neural pulse counting distribution in the cat retinal ganglion cell at low light levels, and (5) the transfer of visual signal to the cortex in a classical psychophysics experiment. A number of more complex contagious distributions arising from multiplicative processes are also discussed, with particular emphasis on photon counting and direct-detection optical communications.

摘要

内曼A型分布和托马斯计数分布为从小块土地上幼虫的分布到太空中星系的分布等各种各样的现象提供了有用的描述。事实证明,只要倍增的时间进程与计数时间相比很短,它们就能很好地描述由倍增泊松过程产生的光子计数。文中给出了概率分布、矩生成函数、矩以及方差均值比的解析表达式。结果表明,在内曼A型和托马斯随机变量的和在乘法参数恒定的约束下保持其形式。文中给出了内曼A型和托马斯分布在分布上收敛到固定乘法泊松分布和高斯分布的条件。后一个结果最为重要,因为它为存在多种信号和噪声时的似然比检测、估计和判别问题提供了现成的解决方案。还考虑了双随机内曼A型分布、托马斯分布和固定乘法泊松分布。文中给出了一些具体应用。这些应用包括:(1)在粒子通量较低时对核粒子的光子计数闪烁检测;(2)在存在电离辐射的情况下对微弱光信号的光子计数检测;(3)为恶劣太空环境设计的星敏感器航天器制导系统;(4)低光照水平下猫视网膜神经节细胞中的神经脉冲计数分布;(5)经典心理物理学实验中视觉信号向皮层的传递。文中还讨论了由乘法过程产生的一些更复杂的传染分布,特别强调了光子计数和直接检测光通信。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验