Prucnal P R, Teich M C
Biol Cybern. 1982;43(2):87-96. doi: 10.1007/BF00336971.
A mathematical technique is described that relates detection model parameters to stimulus magnitude and experimental probability of detection. The normalizing transform is used to make the response statistics approximately Gaussian. Conventional probit analysis is then applied. From measurements at M stimulus levels, a system of M equations is solved and estimates of M unknown parameters of the detection model are obtained. The technique is applied to a threshold vision model based on additive and multiplicative Poisson noise. Results are obtained for the parameter estimates for individual subjects, and for the standard deviation of the estimates, for various values of the stimulus energy and number of trials. A frequency-of-seeing experiment is performed using a point-source stimulus that randomly assumes 3 energy levels with 200 trials per level. With a central efficiency of 50%, the estimated ocular quantum efficiency for our four subjects lies between 12% and 23%, the average dark count at the retina lies between 8 and 36 counts, and the threshold count for our (low false-report rate) data lies between 11 and 32. The theoretical results reduce to those obtained by Barlow (J. Physiol. London 160, 155-168, 1962), in the absence of dark light and multiplication noise.
本文描述了一种数学技术,该技术将检测模型参数与刺激强度和检测的实验概率相关联。使用归一化变换使响应统计量近似呈高斯分布。然后应用传统的概率分析。通过在M个刺激水平上进行测量,求解一个由M个方程组成的系统,从而获得检测模型M个未知参数的估计值。该技术应用于基于加性和乘性泊松噪声的阈值视觉模型。针对不同的刺激能量值和试验次数,得到了个体受试者参数估计值以及估计值的标准差。使用点源刺激进行了一个视见频率实验,该点源刺激随机假设3个能量水平,每个水平进行200次试验。在中心效率为50%的情况下,我们四名受试者的估计眼量子效率在12%至23%之间,视网膜的平均暗计数在8至36次计数之间,我们(低误报率)数据的阈值计数在11至32之间。在没有暗光和倍增噪声的情况下,理论结果简化为Barlow(《伦敦生理学杂志》160, 155 - 168, 1962)所获得的结果。