Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Seeley G. Mudd Science Bldg., 2101 E. Wesley Ave, Denver, CO 80208, USA.
Neurotox Res. 2011 Apr;19(3):374-88. doi: 10.1007/s12640-010-9172-4. Epub 2010 Mar 24.
1-Methyl-4-phenylpyridinium (MPP(+))-induced neurotoxicity has previously been attributed to either caspase-dependent apoptosis or caspase-independent cell death. In the current study, we found that MPP(+) induces a unique, non-apoptotic nuclear morphology coupled with a caspase-independent but calpain-dependent mechanism of cell death in primary cultures of rat cerebellar granule neurons (CGNs). Using a terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay in CGNs exposed to MPP(+), we observed that these neurons are essentially devoid of caspase-dependent DNA fragments indicative of apoptosis. Moreover, proteolysis of a well recognized caspase-3 substrate, poly (ADP ribose) polymerase (PARP), was not observed in CGNs exposed to MPP(+). In contrast, calpain-dependent proteolysis of fodrin and pro-caspases-9 and -3 occurred in this model coupled with inhibition of caspase-3/-7 activities. Notably, several key members of the Bcl-2 protein family appear to be prominent calpain targets in MPP(+)-treated CGNs. Bid and Bax were proteolyzed to truncated forms thought to have greater pro-death activity at mitochondria. Moreover, the pro-survival Bcl-2 protein was degraded to a form predicted to be inactive at mitochondria. Cyclin E was also cleaved by calpain to an active low MW fragment capable of facilitating cell cycle re-entry. Finally, MPP(+)-induced neurotoxicity in CGNs was significantly attenuated by a cocktail of calpain and caspase inhibitors in combination with the antioxidant glutathione. Collectively, these results demonstrate that caspases do not play a central role in CGN toxicity induced by exposure to MPP(+), whereas calpain cleavage of key protein targets, coupled with oxidative stress, plays a critical role in MPP(+)-induced neurotoxicity. Our findings underscore the complexity of MPP(+)-induced neurotoxicity and suggest that calpain may play a fundamental role in causing neuronal death downstream of mitochondrial oxidative stress and dysfunction.
1-甲基-4-苯基吡啶鎓(MPP(+))诱导的神经毒性以前归因于半胱天冬酶依赖性细胞凋亡或半胱天冬酶非依赖性细胞死亡。在本研究中,我们发现 MPP(+)诱导原代培养大鼠小脑颗粒神经元(CGNs)中独特的非凋亡性核形态,同时伴有半胱天冬酶非依赖性但钙蛋白酶依赖性的细胞死亡机制。在暴露于 MPP(+)的 CGNs 中使用末端脱氧核苷酸转移酶 dUTP 缺口末端标记(TUNEL)测定法,我们观察到这些神经元基本上缺乏 caspase 依赖性 DNA 片段,提示细胞凋亡。此外,在暴露于 MPP(+)的 CGNs 中未观察到聚(ADP 核糖)聚合酶(PARP)这一半胱天冬酶-3 的公认底物的蛋白水解。相反,在该模型中发生了钙蛋白酶依赖性 fodrin 和前半胱天冬酶-9 和 -3 的蛋白水解,同时抑制了半胱天冬酶-3/-7 的活性。值得注意的是,Bcl-2 蛋白家族的几个关键成员似乎是 MPP(+)处理的 CGNs 中钙蛋白酶的主要靶标。Bid 和 Bax 被蛋白水解为具有更大线粒体促死亡活性的截断形式。此外,促生存的 Bcl-2 蛋白降解为一种预测在粒体中无活性的形式。细胞周期蛋白 E 也被钙蛋白酶切割为一种具有促进细胞周期再进入能力的活性低 MW 片段。最后,用钙蛋白酶和半胱天冬酶抑制剂的混合物以及抗氧化剂谷胱甘肽显著减轻了 MPP(+)诱导的 CGNs 神经毒性。这些结果表明,半胱天冬酶在暴露于 MPP(+)诱导的 CGN 毒性中不起核心作用,而钙蛋白酶对半胱天冬酶的关键蛋白靶标进行切割,同时伴有氧化应激,在 MPP(+)诱导的神经毒性中起着关键作用。我们的研究结果强调了 MPP(+)诱导的神经毒性的复杂性,并表明钙蛋白酶可能在线粒体氧化应激和功能障碍下游导致神经元死亡中发挥基本作用。