Medical Research and Surgery Services, Veterans Affairs Medical Center, Durham, North Carolina, USA.
Hippocampus. 2011 Jun;21(6):631-46. doi: 10.1002/hipo.20776. Epub 2010 Mar 23.
Increased neurogenesis in the dentate gyrus (DG) after brain insults such as excitotoxic lesions, seizures, or stroke is a well known phenomenon in the young hippocampus. This plasticity reflects an innate compensatory response of neural stem cells (NSCs) in the young hippocampus to preserve function or minimize damage after injury. However, injuries to the middle-aged and aged hippocampi elicit either no or dampened neurogenesis response, which could be due to an altered plasticity of NSCs and/or the hippocampus with age. We examined whether the plasticity of NSCs to increase neurogenesis in response to a milder injury such as partial deafferentation is preserved during aging. We quantified DG neurogenesis in the hippocampus of young, middle-aged, and aged F344 rats after partial deafferentation. A partial deafferentation of the left hippocampus without any apparent cell loss was induced via administration of Kainic acid (0.5 μg in 1.0 μl) into the right lateral ventricle of the brain. In this model, degeneration of CA3 pyramidal neurons and dentate hilar neurons in the right hippocampus results in loss of commissural axons which leads to partial deafferentation of the dendrites of dentate granule cells and CA1-CA3 pyramidal neurons in the left hippocampus. Quantification of newly born cells that are added to the dentate granule cell layer at postdeafferentation days 4-15 using 5'-bromodeoxyuridine (BrdU) labeling revealed greatly increased addition of newly born cells (∼three fold increase) in the deafferented young and middle-aged hippocampi but not in the deafferented aged hippocampus. Measurement of newly born neurons using doublecortin (DCX) immunostaining also revealed similar findings. Analyses using BrdU-DCX dual immunofluorescence demonstrated no changes in neuronal fate-choice decision of newly born cells after deafferentation, in comparison to the age-matched naive hippocampus in all age groups. Thus, the plasticity of hippocampal NSCs to increase DG neurogenesis in response to a milder injury such as partial hippocampal deafferentation is preserved until middle age but lost at old age.
在年轻的海马体中,脑损伤(如兴奋毒性损伤、癫痫发作或中风)后齿状回(DG)中的神经发生增加是一种众所周知的现象。这种可塑性反映了年轻海马体中的神经干细胞(NSC)的固有代偿反应,以在损伤后保持功能或最小化损伤。然而,中年和老年海马体的损伤引发的神经发生反应要么不存在,要么减弱,这可能是由于 NSC 的可塑性改变和/或随着年龄的增长海马体发生了改变。我们研究了 NSCs 对轻度损伤(如部分去传入)增加神经发生的可塑性是否在衰老过程中得到保留。我们在年轻、中年和老年 F344 大鼠的海马体中定量了 DG 神经发生,在大脑右侧侧脑室给予 kainic 酸(0.5 μg 在 1.0 μl 中)诱导左侧海马体部分去传入。在该模型中,右侧海马体的 CA3 锥体神经元和齿状回神经元的变性导致联络轴突的丧失,从而导致左侧海马体的齿状颗粒细胞和 CA1-CA3 锥体神经元的树突部分去传入。使用 5'-溴脱氧尿苷(BrdU)标记在去传入后 4-15 天定量新产生的细胞,结果表明新产生的细胞(增加约三倍)在去传入的年轻和中年海马体中大量增加,但在去传入的老年海马体中则没有增加。使用双皮质素(DCX)免疫染色测量新产生的神经元也得到了类似的发现。与所有年龄组的年龄匹配的未处理海马体相比,BrdU-DCX 双重免疫荧光分析表明,去传入后新产生的细胞的神经元命运选择决策没有变化。因此,海马体 NSCs 对轻度损伤(如部分海马体去传入)增加 DG 神经发生的可塑性在中年之前保持不变,但在老年时丧失。