Suppr超能文献

P2X(1) 受体阻断可抑制体内整体肾脏肾血流自身调节。

P2X(1) receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo.

机构信息

Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912, USA.

出版信息

Am J Physiol Renal Physiol. 2010 Jun;298(6):F1360-8. doi: 10.1152/ajprenal.00016.2010. Epub 2010 Mar 24.

Abstract

In vitro experiments demonstrate that P2X(1) receptor activation is important for normal afferent arteriolar autoregulatory behavior, but direct in vivo evidence for this relationship occurring in the whole kidney is unavailable. Experiments were performed to test the hypothesis that P2X(1) receptors are important for autoregulation of whole kidney blood flow. Renal blood flow (RBF) was measured in anesthetized male Sprague-Dawley rats before and during P2 receptor blockade with PPADS, P2X(1) receptor blockade with IP5I, or A(1) receptor blockade with DPCPX. Both P2X(1) and A(1) receptor stimulation with alpha,beta-methylene ATP and CPA, respectively, caused dose-dependent decreases in RBF. Administration of either PPADS or IP5I significantly blocked P2X(1) receptor stimulation. Likewise, administration of DPCPX significantly blocked A(1) receptor activation to CPA. Autoregulatory behavior was assessed by measuring RBF responses to reductions in renal perfusion pressure. In vehicle-infused rats, as pressure was decreased from 120 to 100 mmHg, there was no decrease in RBF. However, in either PPADS- or IP5I-infused rats, each decrease in pressure resulted in a significant decrease in RBF, demonstrating loss of autoregulatory ability. In DPCPX-infused rats, reductions in pressure did not cause significant reductions in RBF over the pressure range of 100-120 mmHg, but the autoregulatory curve tended to be steeper than vehicle-infused rats over the range of 80-100 mmHg, suggesting that A(1) receptors may influence RBF at lower pressures. These findings are consistent with in vitro data from afferent arterioles and support the hypothesis that P2X(1) receptor activation is important for whole kidney autoregulation in vivo.

摘要

在体实验表明,P2X(1)受体的激活对于正常的入球小动脉自动调节行为是重要的,但在整个肾脏中发生这种关系的直接体内证据尚不可用。进行了实验以检验这样一个假说,即 P2X(1)受体对于整个肾脏血流的自动调节是重要的。在麻醉的雄性 Sprague-Dawley 大鼠中,在施用 P2 受体阻断剂 PPADS、P2X(1)受体阻断剂 IP5I 或 A(1)受体阻断剂 DPCPX 之前和期间测量肾血流(RBF)。分别用 α,β-亚甲基 ATP 和 CPA 刺激 P2X(1)和 A(1)受体,都导致 RBF 剂量依赖性降低。给予 PPADS 或 IP5I 均可显著阻断 P2X(1)受体的刺激。同样,给予 DPCPX 可显著阻断 A(1)受体对 CPA 的激活。通过测量肾灌注压降低时的 RBF 反应来评估自动调节行为。在载体输注的大鼠中,当压力从 120mmHg 降低到 100mmHg 时,RBF 没有降低。然而,在 PPADS 或 IP5I 输注的大鼠中,每次压力降低都会导致 RBF 显著降低,表明自动调节能力丧失。在 DPCPX 输注的大鼠中,在 100-120mmHg 的压力范围内,压力降低不会导致 RBF 显著降低,但自动调节曲线在 80-100mmHg 的范围内比载体输注的大鼠更陡峭,这表明 A(1)受体可能在较低的压力下影响 RBF。这些发现与入球小动脉的体外数据一致,并支持这样一个假说,即 P2X(1)受体的激活对于体内整个肾脏的自动调节是重要的。

相似文献

1
P2X(1) receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo.
Am J Physiol Renal Physiol. 2010 Jun;298(6):F1360-8. doi: 10.1152/ajprenal.00016.2010. Epub 2010 Mar 24.
4
Impaired Ca2+ signaling attenuates P2X receptor-mediated vasoconstriction of afferent arterioles in angiotensin II hypertension.
Hypertension. 2005 Sep;46(3):562-8. doi: 10.1161/01.HYP.0000179584.39937.41. Epub 2005 Aug 22.
5
Physiological role for P2X1 receptors in renal microvascular autoregulatory behavior.
J Clin Invest. 2003 Dec;112(12):1895-905. doi: 10.1172/JCI18499.
6
Pressure-mediated vasoconstriction of juxtamedullary afferent arterioles involves P2-purinoceptor activation.
Am J Physiol. 1996 Nov;271(5 Pt 2):F1077-85. doi: 10.1152/ajprenal.1996.271.5.F1077.
7
Adenosine A2 receptor activation attenuates afferent arteriolar autoregulation during adenosine receptor saturation in rats.
Hypertension. 2007 Oct;50(4):744-9. doi: 10.1161/HYPERTENSIONAHA.107.094961. Epub 2007 Jul 30.
8
Immunosuppression preserves renal autoregulatory function and microvascular P2X(1) receptor reactivity in ANG II-hypertensive rats.
Am J Physiol Renal Physiol. 2013 Mar 15;304(6):F801-7. doi: 10.1152/ajprenal.00286.2012. Epub 2012 Dec 26.
9
Maintained tubuloglomerular feedback responses during acute inhibition of P2 purinergic receptors in mice.
Am J Physiol Renal Physiol. 2011 Feb;300(2):F339-44. doi: 10.1152/ajprenal.00637.2010. Epub 2010 Dec 8.
10
Spinal P2X receptor modulates reflex pressor response to activation of muscle afferents.
Am J Physiol Heart Circ Physiol. 2005 May;288(5):H2238-43. doi: 10.1152/ajpheart.01095.2004. Epub 2004 Dec 22.

引用本文的文献

1
Purinergic Receptor Antagonists: A Complementary Treatment for Hypertension.
Pharmaceuticals (Basel). 2024 Aug 13;17(8):1060. doi: 10.3390/ph17081060.
2
[New concepts in the physiopathology of hypertension. Purinergic receptors].
Arch Cardiol Mex. 2024 May 9;94(4):488-494. doi: 10.24875/ACM.23000245.
3
Molecular insights into P2X signalling cascades in acute kidney injury.
Purinergic Signal. 2024 Oct;20(5):477-486. doi: 10.1007/s11302-024-09987-w. Epub 2024 Jan 22.
4
P2Y2R contributes to the development of diabetic nephropathy by inhibiting autophagy response.
Mol Metab. 2020 Dec;42:101089. doi: 10.1016/j.molmet.2020.101089. Epub 2020 Sep 25.
6
Purinoceptors, renal microvascular function and hypertension.
Physiol Res. 2020 Jul 16;69(3):353-369. doi: 10.33549/physiolres.934463. Epub 2020 Apr 17.
7
Extracellular Nucleotides and P2 Receptors in Renal Function.
Physiol Rev. 2020 Jan 1;100(1):211-269. doi: 10.1152/physrev.00038.2018. Epub 2019 Aug 22.
9
Acute toll-like receptor 4 activation impairs rat renal microvascular autoregulatory behaviour.
Acta Physiol (Oxf). 2017 Nov;221(3):204-220. doi: 10.1111/apha.12899. Epub 2017 Jun 27.
10
Pentosan polysulfate preserves renal microvascular P2X1 receptor reactivity and autoregulatory behavior in DOCA-salt hypertensive rats.
Am J Physiol Renal Physiol. 2016 Mar 15;310(6):F456-65. doi: 10.1152/ajprenal.00110.2015. Epub 2015 Dec 23.

本文引用的文献

1
Protective importance of the myogenic response in the renal circulation.
Hypertension. 2009 Aug;54(2):393-8. doi: 10.1161/HYPERTENSIONAHA.109.133777. Epub 2009 Jun 22.
3
Autocrine ATP release coupled to extracellular pyrophosphate accumulation in vascular smooth muscle cells.
Am J Physiol Cell Physiol. 2009 Apr;296(4):C828-39. doi: 10.1152/ajpcell.00619.2008. Epub 2009 Feb 4.
5
Connexin 40 and ATP-dependent intercellular calcium wave in renal glomerular endothelial cells.
Am J Physiol Regul Integr Comp Physiol. 2008 Jun;294(6):R1769-76. doi: 10.1152/ajpregu.00489.2007. Epub 2008 Apr 9.
6
Uridine adenosine tetraphosphate acts as an autocrine hormone affecting glomerular filtration rate.
J Mol Med (Berl). 2008 Mar;86(3):333-40. doi: 10.1007/s00109-008-0306-6. Epub 2008 Feb 5.
7
Connexins 37 and 40 transduce purinergic signals mediating renal autoregulation.
Am J Physiol Regul Integr Comp Physiol. 2008 Jan;294(1):R1-11. doi: 10.1152/ajpregu.00269.2007. Epub 2007 Oct 10.
8
A novel mechanism of renal blood flow autoregulation and the autoregulatory role of A1 adenosine receptors in mice.
Am J Physiol Renal Physiol. 2007 Nov;293(5):F1489-500. doi: 10.1152/ajprenal.00256.2007. Epub 2007 Aug 29.
9
Adenosine A2 receptor activation attenuates afferent arteriolar autoregulation during adenosine receptor saturation in rats.
Hypertension. 2007 Oct;50(4):744-9. doi: 10.1161/HYPERTENSIONAHA.107.094961. Epub 2007 Jul 30.
10
Purinoceptors in the kidney.
Exp Biol Med (Maywood). 2007 Jun;232(6):715-26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验