Suppr超能文献

评估动态对比增强 MRI 中病变增强动力学的异质性用于乳腺癌诊断。

Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis.

机构信息

Department of Medical Physics, Faculty of Medicine, University of Patras, 26500 Patras, Greece.

出版信息

Br J Radiol. 2010 Apr;83(988):296-309. doi: 10.1259/bjr/50743919.

Abstract

The current study investigates the feasibility of using texture analysis to quantify the heterogeneity of lesion enhancement kinetics in order to discriminate malignant from benign breast lesions. A total of 82 biopsy-proven breast lesions (51 malignant, 31 benign), originating from 74 women subjected to dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) were analysed. Pixel-wise analysis of DCE-MRI lesion data was performed to generate initial enhancement, post-initial enhancement and signal enhancement ratio (SER) parametric maps; these maps were subsequently subjected to co-occurrence matrix texture analysis. The discriminating ability of texture features extracted from each parametric map was investigated using a least-squares minimum distance classifier and further compared with the discriminating ability of the same texture features extracted from the first post-contrast frame. Selected texture features extracted from the SER map achieved an area under receiver operating characteristic curve of 0.922 +/- 0.029, a performance similar to post-initial enhancement map features (0.906 +/- 0.032) and statistically significantly higher than for initial enhancement map (0.767 +/- 0.053) and first post-contrast frame (0.756 +/- 0.060) features. Quantifying the heterogeneity of parametric maps that reflect lesion washout properties could contribute to the computer-aided diagnosis of breast lesions in DCE-MRI.

摘要

本研究旨在探讨利用纹理分析量化病变增强动力学异质性的可行性,以区分良恶性乳腺病变。共分析了 74 名女性 82 个经活检证实的乳腺病变(51 个恶性,31 个良性)的动态对比增强磁共振成像(DCE-MRI)数据。对 DCE-MRI 病变数据进行逐像素分析,生成初始增强、初始后增强和信号增强比(SER)参数图;随后对这些图像进行共生矩阵纹理分析。使用最小二乘最小距离分类器研究从每个参数图中提取的纹理特征的区分能力,并与从第一对比后帧中提取的相同纹理特征的区分能力进行比较。从 SER 图中提取的选定纹理特征的受试者工作特征曲线下面积为 0.922 +/- 0.029,与初始后增强图特征(0.906 +/- 0.032)的性能相似,且统计学上显著高于初始增强图(0.767 +/- 0.053)和第一对比后帧(0.756 +/- 0.060)特征。量化反映病变洗脱特性的参数图的异质性可能有助于 DCE-MRI 中乳腺病变的计算机辅助诊断。

相似文献

3
Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions.
Artif Intell Med. 2013 Jun;58(2):101-14. doi: 10.1016/j.artmed.2013.03.002. Epub 2013 Mar 30.
4
Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis.
Magn Reson Imaging. 2014 Apr;32(3):197-205. doi: 10.1016/j.mri.2013.12.002. Epub 2013 Dec 17.
5
7
Textural kinetics: a novel dynamic contrast-enhanced (DCE)-MRI feature for breast lesion classification.
J Digit Imaging. 2011 Jun;24(3):446-63. doi: 10.1007/s10278-010-9298-1.
8
A computerized global MR image feature analysis scheme to assist diagnosis of breast cancer: a preliminary assessment.
Eur J Radiol. 2014 Jul;83(7):1086-1091. doi: 10.1016/j.ejrad.2014.03.014. Epub 2014 Mar 22.

引用本文的文献

6
Development and validation of a contrast-enhanced CT-based radiomics nomogram for preoperative diagnosis in neuroendocrine carcinoma of digestive system.
Front Endocrinol (Lausanne). 2023 Apr 12;14:1155307. doi: 10.3389/fendo.2023.1155307. eCollection 2023.
9
MRI Radiogenomics in Precision Oncology: New Diagnosis and Treatment Method.
Comput Intell Neurosci. 2022 Jul 7;2022:2703350. doi: 10.1155/2022/2703350. eCollection 2022.

本文引用的文献

1
Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI.
Acad Radiol. 2008 Dec;15(12):1513-25. doi: 10.1016/j.acra.2008.06.005.
3
Breast MRI: guidelines from the European Society of Breast Imaging.
Eur Radiol. 2008 Jul;18(7):1307-18. doi: 10.1007/s00330-008-0863-7. Epub 2008 Apr 4.
6
Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images.
Magn Reson Med. 2007 Sep;58(3):562-71. doi: 10.1002/mrm.21347.
7
Imaging tumor vascular heterogeneity and angiogenesis using dynamic contrast-enhanced magnetic resonance imaging.
Clin Cancer Res. 2007 Jun 15;13(12):3449-59. doi: 10.1158/1078-0432.CCR-07-0238.
8
Computer assistance for MR based diagnosis of breast cancer: present and future challenges.
Comput Med Imaging Graph. 2007 Jun-Jul;31(4-5):236-47. doi: 10.1016/j.compmedimag.2007.02.007. Epub 2007 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验