Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854, USA.
J Digit Imaging. 2011 Jun;24(3):446-63. doi: 10.1007/s10278-010-9298-1.
Dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) of the breast has emerged as an adjunct imaging tool to conventional X-ray mammography due to its high detection sensitivity. Despite the increasing use of breast DCE-MRI, specificity in distinguishing malignant from benign breast lesions is low, and interobserver variability in lesion classification is high. The novel contribution of this paper is in the definition of a new DCE-MRI descriptor that we call textural kinetics, which attempts to capture spatiotemporal changes in breast lesion texture in order to distinguish malignant from benign lesions. We qualitatively and quantitatively demonstrated on 41 breast DCE-MRI studies that textural kinetic features outperform signal intensity kinetics and lesion morphology features in distinguishing benign from malignant lesions. A probabilistic boosting tree (PBT) classifier in conjunction with textural kinetic descriptors yielded an accuracy of 90%, sensitivity of 95%, specificity of 82%, and an area under the curve (AUC) of 0.92. Graph embedding, used for qualitative visualization of a low-dimensional representation of the data, showed the best separation between benign and malignant lesions when using textural kinetic features. The PBT classifier results and trends were also corroborated via a support vector machine classifier which showed that textural kinetic features outperformed the morphological, static texture, and signal intensity kinetics descriptors. When textural kinetic attributes were combined with morphologic descriptors, the resulting PBT classifier yielded 89% accuracy, 99% sensitivity, 76% specificity, and an AUC of 0.91.
动态对比增强(DCE)磁共振成像(MRI)已成为常规 X 射线乳腺摄影的辅助成像工具,因为它具有较高的检测灵敏度。尽管乳腺 DCE-MRI 的应用越来越广泛,但在区分良恶性乳腺病变方面的特异性仍然较低,且病变分类的观察者间差异较大。本文的新颖之处在于定义了一种新的 DCE-MRI 描述符,我们称之为纹理动力学,它试图捕捉乳腺病变纹理的时空变化,以区分良恶性病变。我们在 41 项乳腺 DCE-MRI 研究中定性和定量地证明,纹理动力学特征在区分良恶性病变方面优于信号强度动力学和病变形态特征。结合纹理动力学描述符的概率提升树(PBT)分类器可达到 90%的准确率、95%的敏感度、82%的特异性和 0.92 的曲线下面积(AUC)。图嵌入用于对数据的低维表示进行定性可视化,当使用纹理动力学特征时,它显示出良性和恶性病变之间的最佳分离。PBT 分类器结果和趋势也通过支持向量机分类器得到证实,表明纹理动力学特征优于形态学、静态纹理和信号强度动力学描述符。当纹理动力学属性与形态学描述符结合使用时,生成的 PBT 分类器可达到 89%的准确率、99%的敏感度、76%的特异性和 0.91 的 AUC。