Suppr超能文献

基于模糊 c 均值聚类的特征动力学曲线模型分析对乳腺肿块病变的分类。

Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering.

机构信息

Department of Medical Imaging, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.

出版信息

Magn Reson Imaging. 2012 Apr;30(3):312-22. doi: 10.1016/j.mri.2011.12.002. Epub 2012 Jan 14.

Abstract

The purpose of this study is to evaluate the diagnostic efficacy of the representative characteristic kinetic curve of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) extracted by fuzzy c-means (FCM) clustering for the discrimination of benign and malignant breast tumors using a novel computer-aided diagnosis (CAD) system. About the research data set, DCE-MRIs of 132 solid breast masses with definite histopathologic diagnosis (63 benign and 69 malignant) were used in this study. At first, the tumor region was automatically segmented using the region growing method based on the integrated color map formed by the combination of kinetic and area under curve color map. Then, the FCM clustering was used to identify the time-signal curve with the larger initial enhancement inside the segmented region as the representative kinetic curve, and then the parameters of the Tofts pharmacokinetic model for the representative kinetic curve were compared with conventional curve analysis (maximal enhancement, time to peak, uptake rate and washout rate) for each mass. The results were analyzed with a receiver operating characteristic curve and Student's t test to evaluate the classification performance. Accuracy, sensitivity, specificity, positive predictive value and negative predictive value of the combined model-based parameters of the extracted kinetic curve from FCM clustering were 86.36% (114/132), 85.51% (59/69), 87.30% (55/63), 88.06% (59/67) and 84.62% (55/65), better than those from a conventional curve analysis. The A(Z) value was 0.9154 for Tofts model-based parametric features, better than that for conventional curve analysis (0.8673), for discriminating malignant and benign lesions. In conclusion, model-based analysis of the characteristic kinetic curve of breast mass derived from FCM clustering provides effective lesion classification. This approach has potential in the development of a CAD system for DCE breast MRI.

摘要

本研究旨在评估使用新型计算机辅助诊断(CAD)系统,通过模糊 C 均值(FCM)聚类提取的动态对比增强(DCE)磁共振成像(MRI)代表性特征动力学曲线对鉴别良恶性乳腺肿瘤的诊断效能。在研究数据集方面,纳入了 132 例经病理明确诊断的实性乳腺肿块的 DCE-MRI(良性 63 例,恶性 69 例)。首先,采用基于积分曲线的区域生长方法自动分割肿瘤区域,该曲线由动力学曲线和曲线下面积彩色图谱组合而成。然后,使用 FCM 聚类识别分割区域内初始强化较大的时间-信号曲线作为代表性动力学曲线,比较各肿块代表动力学曲线的 Tofts 药代动力学模型参数与传统曲线分析(最大强化、达峰时间、摄取率和洗脱率)。采用受试者工作特征曲线和学生 t 检验分析结果,以评估分类性能。FCM 聚类提取的动力学曲线的联合模型参数的诊断准确性、敏感性、特异性、阳性预测值和阴性预测值分别为 86.36%(114/132)、85.51%(59/69)、87.30%(55/63)、88.06%(59/67)和 84.62%(55/65),优于传统曲线分析。基于 Tofts 模型参数特征的 A(Z)值为 0.9154,优于传统曲线分析(0.8673),可用于鉴别良恶性病变。总之,基于 FCM 聚类的乳腺肿块特征动力学曲线的模型分析可为病变分类提供有效信息。该方法有望应用于 DCE 乳腺 MRI 的 CAD 系统开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验