Genzyme Corporation, Framingham, MA 01701-9322, USA.
J Inherit Metab Dis. 2010 Jun;33(3):281-9. doi: 10.1007/s10545-010-9072-z. Epub 2010 Mar 25.
Gaucher disease is caused by a deficiency of the lysosomal enzyme glucocerebrosidase (acid beta-glucosidase), with consequent cellular accumulation of glucosylceramide (GL-1). The disease is managed by intravenous administrations of recombinant glucocerebrosidase (imiglucerase), although symptomatic patients with mild to moderate type 1 Gaucher disease for whom enzyme replacement therapy (ERT) is not an option may also be treated by substrate reduction therapy (SRT) with miglustat. To determine whether the sequential use of both ERT and SRT may provide additional benefits, we compared the relative pharmacodynamic efficacies of separate and sequential therapies in a murine model of Gaucher disease (D409V/null). As expected, ERT with recombinant glucocerebrosidase was effective in reducing the burden of GL-1 storage in the liver, spleen, and lung of 3-month-old Gaucher mice. SRT using a novel inhibitor of glucosylceramide synthase (Genz-112638) was also effective, albeit to a lesser degree than ERT. Animals administered recombinant glucocerebrosidase and then Genz-112638 showed the lowest levels of GL-1 in all the visceral organs and a reduced number of Gaucher cells in the liver. This was likely because the additional deployment of SRT following enzyme therapy slowed the rate of reaccumulation of GL-1 in the affected organs. Hence, in patients whose disease has been stabilized by intravenously administered recombinant glucocerebrosidase, orally administered SRT with Genz-112638 could potentially be used as a convenient maintenance therapy. In patients naïve to treatment, ERT followed by SRT could potentially accelerate clearance of the offending substrate.
戈谢病是由于溶酶体酶葡萄糖脑苷脂酶(酸性β-葡萄糖苷酶)的缺乏引起的,导致葡萄糖脑苷脂(GL-1)的细胞积累。该病通过静脉给予重组葡萄糖脑苷脂酶(伊米苷酶)来治疗,尽管对于没有酶替代疗法(ERT)选择的轻度至中度 1 型戈谢病症状性患者,也可以通过米格列司他进行底物减少疗法(SRT)进行治疗。为了确定连续使用 ERT 和 SRT 是否可能提供额外的益处,我们在戈谢病的小鼠模型(D409V/null)中比较了单独和序贯治疗的相对药效学效果。正如预期的那样,重组葡萄糖脑苷脂酶的 ERT 有效地降低了 3 个月大的戈谢病小鼠肝脏、脾脏和肺中 GL-1 储存的负担。使用新型葡萄糖脑苷脂合酶抑制剂(Genz-112638)的 SRT 也是有效的,尽管效果不如 ERT。给予重组葡萄糖脑苷脂酶然后给予 Genz-112638 的动物在所有内脏器官中 GL-1 水平最低,肝脏中的戈谢细胞数量减少。这可能是因为在酶治疗后额外进行 SRT 减缓了受影响器官中 GL-1 再积累的速度。因此,在通过静脉给予重组葡萄糖脑苷脂酶稳定疾病的患者中,口服给予 Genz-112638 的 SRT 可能可以作为一种方便的维持治疗。对于未经治疗的患者,ERT 后进行 SRT 可能会加速清除致病底物。