Suppr超能文献

[基于改进的独立成分分析主动外观模型和马尔可夫随机场的脊柱椎间盘磁共振图像分析]

[Spine disc MR image analysis using improved independent component analysis based active appearance model and Markov random field].

作者信息

Hao Shijie, Zhan Shu, Jiang Jianguo, Li Hong, Ian Rosse

机构信息

School of Computer and Information, Hefei University of Technology, Hefei 230009, China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2010 Feb;27(1):6-9, 15.

Abstract

As there are not many research reports on segmentation and quantitative analysis of soft tissues in lumbar medical images, this paper presents an algorithm for segmenting and quantitatively analyzing discs in lumbar Magnetic Resonance Imaging (MRI). Vertebrae are first segmented using improved Independent component analysis based active appearance model (ICA-AAM), and lumbar curve is obtained with Minimum Description Length (MDL); based on these results, fast and unsupervised Markov Random Field (MRF) disc segmentation combining disc imaging features and intensity profile is further achieved; finally, disc herniation is quantitatively evaluated. The experiment proves that the proposed algorithm is fast and effective, thus providing doctors with aid in diagnosing and curing lumbar disc herniation.

摘要

由于关于腰椎医学图像中软组织分割和定量分析的研究报告不多,本文提出了一种用于腰椎磁共振成像(MRI)中椎间盘分割和定量分析的算法。首先使用基于改进独立成分分析的主动外观模型(ICA-AAM)分割椎体,并通过最小描述长度(MDL)获得腰椎曲线;基于这些结果,进一步实现结合椎间盘成像特征和强度轮廓的快速无监督马尔可夫随机场(MRF)椎间盘分割;最后,对椎间盘突出进行定量评估。实验证明,该算法快速有效,从而为医生诊断和治疗腰椎间盘突出症提供帮助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验