Suppr超能文献

A(+)·C 摇摆中核酸 pK(a)移动的驱动力:螺旋位置、温度和离子强度的影响。

Driving forces for nucleic acid pK(a) shifting in an A(+).C wobble: effects of helix position, temperature, and ionic strength.

机构信息

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.

出版信息

Biochemistry. 2010 Apr 20;49(15):3225-36. doi: 10.1021/bi901920g.

Abstract

Secondary structure plays critical roles in nucleic acid function. Mismatches in DNA can lead to mutation and disease, and some mismatches involve a protonated base. Among protonated mismatches, A(+).C wobble pairs form near physiological pH and have relatively minor effects on helix geometry, making them especially important in biology. Herein, we investigate effects of helix position, temperature, and ionic strength on pK(a) shifting in A(+).C wobble pairs in DNA. We observe that pK(a) shifting is favored by internal A(+).C wobbles, which have low cooperativities of folding and make large contributions to stability, and disfavored by external A(+).C wobbles, which have high folding cooperativities but make small contributions to stability. An inverse relationship between pK(a) shifting and temperature is also found, which supports a model in which protonation is enthalpically favored overall and entropically correlated with cooperativity of folding. We also observe greater pK(a) shifts as the ionic strength decreases, consistent with anticooperativity between proton binding and counterion-condensed monovalent cation. Under the most favorable temperature and ionic strength conditions tested, a pK(a) of 8.0 is observed for the A(+).C wobble pair, which represents an especially large shift ( approximately 4.5 pK(a) units) from the unperturbed pK(a) value of adenosine. This study suggests that protonated A(+).C wobble pairs exist in DNA under biologically relevant conditions, where they can drive conformational changes and affect replication and transcription fidelity.

摘要

二级结构在核酸功能中起着关键作用。DNA 中的错配会导致突变和疾病,有些错配涉及质子化碱基。在质子化错配中,A(+).C 摆动对在生理 pH 附近形成,对螺旋几何形状的影响较小,因此在生物学中尤为重要。在此,我们研究了螺旋位置、温度和离子强度对 DNA 中 A(+).C 摆动对的 pK(a) 移动的影响。我们观察到,内部 A(+).C 摆动有利于 pK(a) 移动,内部 A(+).C 摆动的折叠协同性低,对稳定性的贡献大,而外部 A(+).C 摆动不利于 pK(a) 移动,外部 A(+).C 摆动的折叠协同性高,但对稳定性的贡献小。还发现 pK(a) 移动与温度呈反比关系,这支持了质子化在总体上有利于焓变且与折叠协同性相关的模型。我们还观察到随着离子强度的降低,pK(a) 移动越大,这与质子结合与抗衡离子凝聚单价阳离子之间的反协同作用一致。在所测试的最有利的温度和离子强度条件下,A(+).C 摆动对的 pK(a) 为 8.0,与未受干扰的腺苷 pK(a) 值相比,这是一个特别大的移动(约 4.5 pK(a) 单位)。这项研究表明,在生物相关条件下,质子化的 A(+).C 摆动对存在于 DNA 中,它们可以驱动构象变化,并影响复制和转录保真度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验