Suppr超能文献

多流体同轴静电纺丝制备纳米线-微管结构核壳纤维。

Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning.

机构信息

Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.

出版信息

Langmuir. 2010 Jul 6;26(13):11291-6. doi: 10.1021/la100611f.

Abstract

A multifluidic coaxial electrospinning approach is reported here to fabricate core/shell ultrathin fibers with a novel nanowire-in-microtube structure from more optional fluid pairs than routine coaxial electrospinning. The advantage of this approach lies in the fact that it introduces an extra middle fluid between the core and shell fluids of traditional coaxial electrospinning, which can work as an effective spacer to decrease the interaction of the other two fluids. Under the protection of a proper middle fluid, more fluid pairs, even mutually miscible fluids, can be operated to generate "sandwich"-structured ultrathin fibers with a sharp boundary between the core and shell materials. It thereby largely extends the scope of optional materials. Selectively removing the middle layer of the as-prepared fibers results in an interesting nanowire-in-microtube structure. Either homogeneous or heterogeneous fibers with well-tailored sandwich structures have been successfully fabricated. This method is an important extension of traditional co-electrospinning that affords a more universal avenue to preparing core/shell fibers; moreover, the special hollow cavity structure may introduce some extra properties into the conventional core/shell structure, which may find potential applications such as optical applications, microelectronics, and others.

摘要

本文报道了一种多流体同轴静电纺丝方法,该方法可制备具有新颖纳米线-微管结构的核壳型超极细纤维,所用可选流体对多于常规同轴静电纺丝。该方法的优点在于,它在传统同轴静电纺丝的核流体和壳流体之间引入了额外的中间流体,该中间流体可以作为有效间隔物,减少另外两种流体之间的相互作用。在适当的中间流体的保护下,可以使用更多的流体对,甚至是互溶的流体,来生成具有核壳材料之间尖锐边界的“夹层”结构超极细纤维。这大大扩展了可选材料的范围。选择性地去除所制备纤维的中间层会得到有趣的纳米线-微管结构。已经成功制备了具有均匀或非均匀夹层结构的同质或异质纤维。该方法是对传统共静电纺丝的重要扩展,为制备核壳纤维提供了更通用的途径;此外,特殊的中空腔结构可能会为传统的核壳结构引入一些额外的特性,这些特性可能会在光学应用、微电子学等领域找到潜在的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验