Li Wei, Yin Yue, Zhou Huaijuan, Fan Yingwei, Yang Yingting, Gao Qiqi, Li Pei, Gao Ge, Li Jinhua
School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.
Zhengzhou Academy of Intelligent Technology, Beijing Institute of Technology, Zhengzhou 450040, China.
Cyborg Bionic Syst. 2024 May 22;5:0101. doi: 10.34133/cbsystems.0101. eCollection 2024.
In the realm of precise medicine, the advancement of manufacturing technologies is vital for enhancing the capabilities of medical devices such as nano/microrobots, wearable/implantable biosensors, and organ-on-chip systems, which serve to accurately acquire and analyze patients' physiopathological information and to perform patient-specific therapy. Electrospinning holds great promise in engineering materials and components for advanced medical devices, due to the demonstrated ability to advance the development of nanomaterial science. Nevertheless, challenges such as limited composition variety, uncontrollable fiber orientation, difficulties in incorporating fragile molecules and cells, and low production effectiveness hindered its further application. To overcome these challenges, advanced electrospinning techniques have been explored to manufacture functional composites, orchestrated structures, living constructs, and scale-up fabrication. This review delves into the recent advances of electrospinning techniques and underscores their potential in revolutionizing the field of precise medicine, upon introducing the fundamental information of conventional electrospinning techniques, as well as discussing the current challenges and future perspectives.
在精准医学领域,制造技术的进步对于提升诸如纳米/微型机器人、可穿戴/植入式生物传感器以及芯片器官系统等医疗设备的性能至关重要,这些设备有助于准确获取和分析患者的生理病理信息,并进行针对患者的治疗。由于静电纺丝在推动纳米材料科学发展方面所展现出的能力,它在先进医疗设备的材料和部件工程中具有巨大潜力。然而,诸如成分种类有限、纤维取向不可控、难以纳入脆弱分子和细胞以及生产效率低下等挑战阻碍了其进一步应用。为克服这些挑战,人们探索了先进的静电纺丝技术来制造功能复合材料、精心设计的结构、活性构建体以及扩大生产规模。本综述在介绍传统静电纺丝技术的基本信息,以及讨论当前挑战和未来前景的基础上,深入探讨了静电纺丝技术的最新进展,并强调了它们在变革精准医学领域方面的潜力。