Suppr超能文献

临床诊断中的定性概率与定量概率:一项使用计算机模拟的研究

Qualitative probability versus quantitative probability in clinical diagnosis: a study using a computer simulation.

作者信息

Chard T

机构信息

Department of Obstetrics, St. Bartholomew's Hospital Medical College, London, UK.

出版信息

Med Decis Making. 1991 Jan-Mar;11(1):38-41. doi: 10.1177/0272989X9101100106.

Abstract

The use of Bayes' theorem as a diagnostic tool in clinical medicine normally requires an input of exact probability estimates. However, humans tend to think in categories ("likely," "unlikely," etc.) rather than in terms of exact probability. A computer simulation of the presenting features of a case of pelvic infection has been used to compare the effects of quantitative and qualitative probability estimates on the diagnostic accuracy of Bayes' theorem. For the commoner conditions (prior probability greater than or equal to 0.2) the use of a two- or three-category system is virtually equivalent to the use of exact probability. However, uncommon conditions (prior probability less than or equal to 0.03) are completely ignored by the qualitative system. It is concluded that the use of simple categories of probability is acceptable for a Bayesian diagnostic system provided that the target conditions have a relatively high prior probability.

摘要

在临床医学中,将贝叶斯定理用作诊断工具通常需要输入精确的概率估计值。然而,人类倾向于用类别(“可能”“不太可能”等)来思考,而非精确概率。利用计算机模拟盆腔感染病例的呈现特征,比较了定量和定性概率估计对贝叶斯定理诊断准确性的影响。对于较常见的病症(先验概率大于或等于0.2),使用两类或三类系统实际上等同于使用精确概率。然而,定性系统完全忽略了不常见的病症(先验概率小于或等于0.03)。得出的结论是,对于贝叶斯诊断系统而言,只要目标病症具有相对较高的先验概率,使用简单的概率类别是可以接受的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验