Suppr超能文献

贝叶斯定理的定性方法。

A qualitative approach to Bayes' theorem.

作者信息

Medow Mitchell A, Lucey Catherine R

机构信息

Section of General Internal Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

出版信息

Evid Based Med. 2011 Dec;16(6):163-7. doi: 10.1136/ebm-2011-0007. Epub 2011 Aug 23.

Abstract

While decisions made according to Bayes' theorem are the academic normative standard, the theorem is rarely used explicitly in clinical practice. Yet the principles can be followed without intimidating mathematics. To do so, one can first categorise the prior-probability of the disease being tested for as very unlikely (less likely than 10%), unlikely (10-33%), uncertain (34-66%), likely (67-90%) or very likely (more likely than 90%). Usually, for disorders that are very unlikely or very likely, no further testing is needed. If the prior probability is unlikely, uncertain or likely, a test and a Bayesian-inspired update process incorporating the result can help. A positive result of a good test increases the probability of the disorder by one likelihood category (eg, from uncertain to likely) and a negative test decreases the probability by one category. If testing is needed to escape the extremes of likelihood (eg, a very unlikely but particularly dangerous condition or in the circumstance of population screening, or a very likely condition with a particularly noxious treatment), two tests may be needed to achieve. Negative results of tests with sensitivity ≥99% are sufficient to rule-out a diagnosis; positive results of tests with specificity ≥99% are sufficient to rule-in a diagnosis. This method overcomes some common heuristic errors: ignoring the base rate, probability adjustment errors and order effects. The simplicity of the method, while still adhering to the basic principles of Bayes' theorem, has the potential to increase its application in clinical practice.

摘要

虽然根据贝叶斯定理做出的决策是学术上的规范标准,但该定理在临床实践中很少被明确使用。然而,遵循这些原则并不需要复杂的数学知识。要做到这一点,可以首先将所检测疾病的先验概率分类为极不可能(低于10%)、不太可能(10%-33%)、不确定(34%-66%)、可能(67%-90%)或极有可能(高于90%)。通常,对于极不可能或极有可能的疾病,无需进一步检测。如果先验概率为不太可能、不确定或可能,则进行一项检测,并结合检测结果进行受贝叶斯启发的更新过程会有所帮助。一项优质检测的阳性结果会使疾病的概率提升一个可能性类别(例如,从不确定提升到可能),而阴性检测结果则会使概率降低一个类别。如果需要通过检测来避免可能性的极端情况(例如,一种极不可能但特别危险的情况,或在人群筛查的情况下,或一种极有可能但有特别有害治疗方法的情况),可能需要进行两项检测才能实现。灵敏度≥99%的检测的阴性结果足以排除诊断;特异性≥99%的检测的阳性结果足以确诊。这种方法克服了一些常见的启发式错误:忽略基础概率、概率调整错误和顺序效应。该方法的简单性,在仍然遵循贝叶斯定理基本原理的同时,有可能增加其在临床实践中的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验