Johannes Gutenberg-Universitaet Mainz, Institut fuer Zoologie III, Col.-Kleinmann-Weg 2, Mainz, Germany.
Curr Biol. 2010 Apr 13;20(7):663-8. doi: 10.1016/j.cub.2010.02.055. Epub 2010 Mar 25.
Drosophila melanogaster flies cross surmountable gaps in their walkway of widths exceeding their body length with an astounding maneuver but avoid attempts at insurmountable gaps by visual width estimation. Different mutant lines affect specific aspects of this maneuver, indicating a high complexity and modularity of the underlying motor control. Here we report on two mutants, ocelliless(1) and tay bridge(1), that, although making a correct decision to climb, fail dramatically in aiming at the right direction. Both mutants show structural defects in the protocerebral bridge, a central complex neuropil formed like a handlebar spanning the brain hemispheres. The bridge has been implicated in step-length control in walking flies and celestial E-vector orientation in locusts. In rescue experiments using tay bridge(1) flies, the integrity of the bridge was reestablished, concomitantly leading to a significant improvement of their orientation at the gap. Although producing directional scatter, their attempts were clearly aimed at the landing site. However, this partial rescue was lost in these flies at a reduced-visibility landing site. We therefore conclude that the protocerebral bridge is an essential part of a visual targeting network that transmits directional clues to the motor output via a known projection system.
果蝇在其步行通道上跨越超过其体长的可跨越间隙,以惊人的动作完成这一动作,但通过视觉宽度估计来避免无法跨越的间隙。不同的突变系影响这一动作的特定方面,表明其潜在的运动控制具有很高的复杂性和模块化。在这里,我们报告了两个突变体,occelliless(1)和 tay bridge(1),尽管它们做出了正确的攀爬决定,但在瞄准正确方向时却严重失败。这两个突变体都显示出原脑桥的结构缺陷,原脑桥是一个像把手一样横跨大脑半球的中央复杂神经索。该桥在行走果蝇的步长控制和蝗虫的天体 E 向量方向中被涉及。在使用 tay bridge(1)果蝇的挽救实验中,桥的完整性得以重建,同时显著改善了它们在间隙处的定向。尽管产生了方向上的散射,但它们的尝试显然是针对着陆点的。然而,在可见度降低的着陆点,这些苍蝇的部分挽救就消失了。因此,我们得出结论,原脑桥是视觉目标网络的重要组成部分,该网络通过已知的投射系统将方向线索传递给运动输出。