Poeck Burkhard, Triphan Tilman, Neuser Kirsa, Strauss Roland
Lehrstuhl für Genetik und Neurobiologie, Biozentrum, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany.
Dev Neurobiol. 2008 Jul;68(8):1046-58. doi: 10.1002/dneu.20643.
Several aspects of locomotor control have been ascribed to the central complex of the insect brain; however, the role of distinct substructures of this complex is not well known. The tay bridge1 (tay1) mutant of Drosophila melanogaster was originally isolated on the basis of reduced walking speed and activity. In addition, tay1 is defective in the compensation of rotatory stimuli during walking and histologically, tay1 causes a mid-sagittal constriction of the protocerebral bridge, a constituent of the central complex. Cloning of the tay gene revealed that it encodes a novel protein with no significant homology to any known protein. To associate the behavioral phenotypes with the anatomical defect in the protocerebral bridge, we used different driver lines to express the tay cDNA in various neuronal subpopulations of the central brain in tay1-mutant flies. These experiments showed an association of the aberrant walking speed and activity with the structural defect in the protocerebral bridge. In contrast, the compensation of rotatory stimuli during walking was rescued without a restoration of the protocerebral bridge. The results of our differential rescue approach are supported by neuronal silencing experiments using conditional tetanus toxin expression in the same subset of neurons. These findings show for the first time that the walking speed and activity is controlled by different substructures of the central brain than the compensatory locomotion for rotatory stimuli.
昆虫大脑的中央复合体被认为与运动控制的几个方面有关;然而,该复合体中不同子结构的作用尚不清楚。黑腹果蝇的泰伊桥1(tay1)突变体最初是根据行走速度和活动能力降低而分离出来的。此外,tay1在行走过程中对旋转刺激的补偿存在缺陷,从组织学上看,tay1会导致原脑桥(中央复合体的一个组成部分)出现中矢状面收缩。tay基因的克隆表明,它编码一种与任何已知蛋白质都没有显著同源性的新型蛋白质。为了将行为表型与原脑桥的解剖缺陷联系起来,我们使用不同的驱动系在tay1突变果蝇的中枢脑的各种神经元亚群中表达tay cDNA。这些实验表明,异常的行走速度和活动与原脑桥的结构缺陷有关。相比之下,行走过程中对旋转刺激的补偿得以挽救,而原脑桥并未恢复。我们的差异挽救方法的结果得到了在同一神经元亚群中使用条件性破伤风毒素表达的神经元沉默实验的支持。这些发现首次表明,行走速度和活动由中枢脑的不同子结构控制,而不是由对旋转刺激的补偿性运动控制。