Computer Science, Eastern Michigan University, Ann Arbor, MI, USA.
Semin Nephrol. 2010 Mar;30(2):177-84. doi: 10.1016/j.semnephrol.2010.01.008.
A current challenge in interpretation of genome-wide association studies is to establish the mechanistic links between the measured genotype and observed phenotype. The integration of gene expression with disease genome-wide association studies is emerging as an important strategy for deciphering these regulatory mechanisms. For renal disease, the availability of both tissue- and disease-specific expression data makes the strategy a compelling option. In this review, three approaches of integrating single nucleotide polymorphism (SNP) genotypes with transcriptional regulation are discussed as follows: (1) interpreting the functional role of transcripts affected by a SNP, (2) identifying the mechanistic role of noncoding SNPs in regulation, and (3) identifying regulatory candidate SNPs with expression associations. Combining these strategies in an integrative manner should allow the discovery of more extensive regulatory information. Linking genetics to systems biology more directly promises the opportunity to explain how genetic variants contribute to disease in a truly holistic manner.
目前,全基因组关联研究的一个挑战是建立所测基因型与观察到的表型之间的机制联系。将基因表达与疾病全基因组关联研究相结合,正在成为破译这些调控机制的重要策略。对于肾脏疾病,组织和疾病特异性表达数据的可用性使得该策略成为一种强制性选择。在这篇综述中,讨论了将单核苷酸多态性 (SNP) 基因型与转录调控相结合的三种方法,如下所示:(1) 解释受 SNP 影响的转录本的功能作用,(2) 确定非编码 SNP 在调控中的机制作用,以及 (3) 确定具有表达关联的调节候选 SNP。以综合的方式结合这些策略应该可以发现更广泛的调控信息。更直接地将遗传学与系统生物学联系起来,有望有机会以一种真正整体的方式解释遗传变异如何导致疾病。