Suppr超能文献

哺乳动物肾脏近端小管中近端氯化钠重吸收的机制。

Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.

作者信息

Berry C A, Rector F C

机构信息

Department of Physiology, University of California, San Francisco 94143.

出版信息

Semin Nephrol. 1991 Mar;11(2):86-97.

PMID:2034928
Abstract

In the mammalian proximal tubule NaCl reabsorption occurs by both passive and active transport processes. Passive NaCl reabsorption occurs in the presence of a high luminal chloride and a low luminal bicarbonate concentration. These anion gradients provide the driving forces for diffusive Na and Cl movement. Na is driven by the lumen positive PD effected by the greater permeability of the tubular wall to Cl than to HCO3. Cl is driven by its high tubular concentration. Passive NaCl reabsorption accounts for only about 10% to 15% of total proximal NaCl transport. The remaining proximal NaCl is reabsorbed by active transport processes and occurs both in the presence or absence of anion gradients reabsorption. Two mechanisms of active NaCl reabsorption participate in active NaCl reabsorption along the proximal tubule. Firstly, active NaCl reabsorption is electrogenic. In the early proximal tubule Na enters to cell coupled to organic solute transport. This Na reabsorption generates a lumen negative PD and effects "coupled" electrogenic NaCl reabsorption. This mechanism is limited by the supply of organic solutes and is blunted by the greater Na than Cl permeability in the proximal tubule; it probably can account for no more than 10% of proximal NaCl reabsorption. In the terminal proximal tubule, the proximal straight tubule, the apical membrane appears to possess a channel for Na entry. This Na reabsorption also generates a lumen negative PD and effects "simple" electrogenic NaCl reabsorption. This mechanism is limited by the low transport capacity of this segment and probably accounts for no more than 5% to 10% of total proximal NaCl reabsorption. The great bulk of proximal NaCl reabsorption occurs along the entire proximal tubule by active, transcellular electroneutral NaCl reabsorption. The precise cellular transport mechanisms responsible for this process are only recently being defined. At the apical membrane parallel ion exchangers are responsible for NaCl entry into the cell. Na enters via the apical membrane Na-H antiporter. Cl most likely crosses the apical membrane by some combination of Cl-OH and Cl-HCO2 exchangers but not via a Cl-HCO3 exchanger. The relative contributions of Cl-OH and Cl-HCO2 exchange have not been defined. There are two important considerations in this question. First is the availbility of OH versus HCO2. Although there is an infinite supply of OH and a small equilibrium supply of HCO2, it is possible that the luminal concentration of HCO2 could be increased by an USL that raises the concentration of HCO2 to a degree sufficient to supply H2CO2 recycling for physiological transcellular Cl transport rates.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

在哺乳动物近端小管中,氯化钠的重吸收通过被动和主动转运过程进行。被动性氯化钠重吸收发生在管腔氯离子浓度高而碳酸氢根离子浓度低的情况下。这些阴离子梯度为钠离子和氯离子的扩散运动提供驱动力。钠离子由管腔正电位驱动,这是由于管壁对氯离子的通透性大于对碳酸氢根离子的通透性所致。氯离子则由其在管腔中的高浓度驱动。被动性氯化钠重吸收仅占近端小管氯化钠总转运量的约10%至15%。其余的近端小管氯化钠通过主动转运过程重吸收,且无论阴离子梯度重吸收是否存在均会发生。有两种主动氯化钠重吸收机制参与近端小管的主动氯化钠重吸收。首先,主动氯化钠重吸收是电生性的。在近端小管早期,钠离子与有机溶质转运偶联进入细胞。这种钠离子重吸收产生管腔负电位,并影响“偶联”的电生性氯化钠重吸收。该机制受有机溶质供应的限制,且因近端小管中钠离子通透性大于氯离子通透性而减弱;它可能仅占近端小管氯化钠重吸收的不超过10%。在近端小管末端,即近端直小管,顶端膜似乎具有钠离子进入的通道。这种钠离子重吸收也产生管腔负电位,并影响“简单”的电生性氯化钠重吸收。该机制受该节段低转运能力的限制,可能仅占近端小管氯化钠总重吸收的不超过5%至10%。近端小管大部分氯化钠重吸收是通过主动的跨细胞电中性氯化钠重吸收沿整个近端小管发生的。负责这一过程的确切细胞转运机制直到最近才得以明确。在顶端膜,平行离子交换体负责氯化钠进入细胞。钠离子通过顶端膜钠-氢反向转运体进入。氯离子很可能通过氯离子-氢氧根离子和氯离子-甲酸根离子交换体的某种组合穿过顶端膜,但不是通过氯离子-碳酸氢根离子交换体。氯离子-氢氧根离子和氯离子-甲酸根离子交换的相对贡献尚未明确。在这个问题上有两个重要考虑因素。首先是氢氧根离子与甲酸根离子的可用性。尽管氢氧根离子供应无限而甲酸根离子平衡供应较少,但有可能通过上调溶质负载(USL)使管腔中甲酸根离子浓度升高到足以供应碳酸循环以满足生理性跨细胞氯离子转运速率的程度。(摘要截于4

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验