Suppr超能文献

细胞溶质中钠离子浓度的升高会增加衰竭心肌细胞中线粒体活性氧的形成。

Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes.

机构信息

Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, 66421 Homburg, Germany.

出版信息

Circulation. 2010 Apr 13;121(14):1606-13. doi: 10.1161/CIRCULATIONAHA.109.914911. Epub 2010 Mar 29.

Abstract

BACKGROUND

Oxidative stress is causally linked to the progression of heart failure, and mitochondria are critical sources of reactive oxygen species in failing myocardium. We previously observed that in heart failure, elevated cytosolic Na(+) (Na(+)) reduces mitochondrial Ca(2+) (Ca(2+)) by accelerating Ca(2+) efflux via the mitochondrial Na(+)/Ca(2+) exchanger. Because the regeneration of antioxidative enzymes requires NADPH, which is indirectly regenerated by the Krebs cycle, and Krebs cycle dehydrogenases are activated by Ca(2+), we speculated that in failing myocytes, elevated Na(+) promotes oxidative stress.

METHODS AND RESULTS

We used a patch-clamp-based approach to simultaneously monitor cytosolic and mitochondrial Ca(2+) and, alternatively, mitochondrial H(2)O(2) together with NAD(P)H in guinea pig cardiac myocytes. Cells were depolarized in a voltage-clamp mode (3 Hz), and a transition of workload was induced by beta-adrenergic stimulation. During this transition, NAD(P)H initially oxidized but recovered when Ca(2+) increased. The transient oxidation of NAD(P)H was closely associated with an increase in mitochondrial H(2)O(2) formation. This reactive oxygen species formation was potentiated when mitochondrial Ca(2+) uptake was blocked (by Ru360) or Ca(2+) efflux was accelerated (by elevation of Na(+)). In failing myocytes, H(2)O(2) formation was increased, which was prevented by reducing mitochondrial Ca(2+) efflux via the mitochondrial Na(+)/Ca(2+) exchanger.

CONCLUSIONS

Besides matching energy supply and demand, mitochondrial Ca(2+) uptake critically regulates mitochondrial reactive oxygen species production. In heart failure, elevated Na(+) promotes reactive oxygen species formation by reducing mitochondrial Ca(2+) uptake. This novel mechanism, by which defects in ion homeostasis induce oxidative stress, represents a potential drug target to reduce reactive oxygen species production in the failing heart.

摘要

背景

氧化应激与心力衰竭的进展有因果关系,而线粒体是衰竭心肌中活性氧物质的关键来源。我们之前观察到,在心力衰竭中,升高的细胞质钠离子浓度 ([Na+]i) 通过加速线粒体钠离子/钙离子交换体的钙离子外排,从而降低线粒体钙离子浓度 ([Ca2+]m)。由于抗氧化酶的再生需要 NADPH,而 NADPH 是通过三羧酸循环间接再生的,并且三羧酸循环脱氢酶被 [Ca2+]m 激活,我们推测在衰竭的心肌细胞中,升高的 [Na+]i 会促进氧化应激。

方法和结果

我们使用基于膜片钳的方法同时监测豚鼠心肌细胞的细胞质和线粒体钙离子,以及交替监测线粒体 H2O2 和 NAD(P)H。细胞在电压钳模式(3 Hz)下去极化,通过β肾上腺素刺激诱导工作量转换。在此转换过程中,NAD(P)H 最初被氧化,但当 [Ca2+]m 增加时恢复。NAD(P)H 的短暂氧化与线粒体 H2O2 形成的增加密切相关。当阻断线粒体钙离子摄取(通过 Ru360)或加速钙离子外排(通过升高 [Na+]i)时,这种活性氧物质的形成会增强。在衰竭的心肌细胞中,H2O2 的形成增加,而通过减少线粒体钠离子/钙离子交换体的钙离子外排可以防止这种情况的发生。

结论

除了匹配能量供应和需求外,线粒体钙离子摄取还严格调节线粒体活性氧物质的产生。在心力衰竭中,升高的 [Na+]i 通过降低线粒体钙离子摄取来促进活性氧物质的形成。这种通过离子稳态缺陷诱导氧化应激的新机制,为减少心力衰竭中活性氧物质的产生提供了一个潜在的药物靶点。

相似文献

1
Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes.
Circulation. 2010 Apr 13;121(14):1606-13. doi: 10.1161/CIRCULATIONAHA.109.914911. Epub 2010 Mar 29.
3
Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes.
Circulation. 2010 Nov 30;122(22):2273-80. doi: 10.1161/CIRCULATIONAHA.110.968057. Epub 2010 Nov 15.
4
Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
Circ Res. 2008 Aug 1;103(3):279-88. doi: 10.1161/CIRCRESAHA.108.175919. Epub 2008 Jul 3.
5
Regulation of the Na+/Ca2+ exchanger by pyridine nucleotide redox potential in ventricular myocytes.
J Biol Chem. 2013 Nov 1;288(44):31984-92. doi: 10.1074/jbc.M113.496588. Epub 2013 Sep 17.
6
Calcium Signaling and Reactive Oxygen Species in Mitochondria.
Circ Res. 2018 May 11;122(10):1460-1478. doi: 10.1161/CIRCRESAHA.118.310082.
7
Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A.
Biochim Biophys Acta. 2011 Jul;1813(7):1373-81. doi: 10.1016/j.bbamcr.2011.02.012. Epub 2011 Feb 26.
8
Mitochondrial dysfunction causing cardiac sodium channel downregulation in cardiomyopathy.
J Mol Cell Cardiol. 2013 Jan;54:25-34. doi: 10.1016/j.yjmcc.2012.10.011. Epub 2012 Nov 1.
10
Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress.
J Mol Cell Cardiol. 2011 Nov;51(5):632-9. doi: 10.1016/j.yjmcc.2011.05.007. Epub 2011 May 27.

引用本文的文献

2
Mechano-energetic uncoupling in heart failure.
Nat Rev Cardiol. 2025 Jun 22. doi: 10.1038/s41569-025-01167-6.
4
Mitochondrial calcium signaling and redox homeostasis in cardiac health and disease.
Front Mol Med. 2023 Aug 23;3:1235188. doi: 10.3389/fmmed.2023.1235188. eCollection 2023.
5
The inotropic and arrhythmogenic effects of acutely increased late I are associated with elevated ROS but not oxidation of PKARIα.
Front Cardiovasc Med. 2024 Jul 15;11:1379930. doi: 10.3389/fcvm.2024.1379930. eCollection 2024.
7
CaMKIIδ-dependent dysregulation of atrial Na homeostasis promotes pro-arrhythmic activity in an obstructive sleep apnea mouse model.
Front Pharmacol. 2024 Jun 20;15:1411822. doi: 10.3389/fphar.2024.1411822. eCollection 2024.
8
Impaired Intracellular Calcium Buffering Contributes to the Arrhythmogenic Substrate in Atrial Myocytes From Patients With Atrial Fibrillation.
Circulation. 2024 Aug 13;150(7):544-559. doi: 10.1161/CIRCULATIONAHA.123.066577. Epub 2024 Jun 24.
9
Mitochondrial calcium in cardiac ischemia/reperfusion injury and cardioprotection.
Basic Res Cardiol. 2024 Aug;119(4):569-585. doi: 10.1007/s00395-024-01060-2. Epub 2024 Jun 19.
10
Elevated Na is a dynamic and reversible modulator of mitochondrial metabolism in the heart.
Nat Commun. 2024 May 20;15(1):4277. doi: 10.1038/s41467-024-48474-z.

本文引用的文献

1
Endogenous activation of mitochondrial KATP channels protects human failing myocardium from hydroxyl radical-induced stunning.
Circ Res. 2009 Oct 9;105(8):811-7. doi: 10.1161/CIRCRESAHA.109.206359. Epub 2009 Sep 3.
2
Regulation of the human cardiac mitochondrial Ca2+ uptake by 2 different voltage-gated Ca2+ channels.
Circulation. 2009 May 12;119(18):2435-43. doi: 10.1161/CIRCULATIONAHA.108.835389. Epub 2009 Apr 27.
3
Domestication of the cardiac mitochondrion for energy conversion.
J Mol Cell Cardiol. 2009 Jun;46(6):832-41. doi: 10.1016/j.yjmcc.2009.02.018. Epub 2009 Mar 2.
4
Regulation of intracellular and mitochondrial sodium in health and disease.
Circ Res. 2009 Feb 13;104(3):292-303. doi: 10.1161/CIRCRESAHA.108.189050.
5
Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
Circ Res. 2008 Aug 1;103(3):279-88. doi: 10.1161/CIRCRESAHA.108.175919. Epub 2008 Jul 3.
6
A redox-dependent pathway for regulating class II HDACs and cardiac hypertrophy.
Cell. 2008 Jun 13;133(6):978-93. doi: 10.1016/j.cell.2008.04.041.
7
A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation.
Cell. 2008 May 2;133(3):462-74. doi: 10.1016/j.cell.2008.02.048.
8
NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences.
Antioxid Redox Signal. 2008 Feb;10(2):179-206. doi: 10.1089/ars.2007.1672.
9
Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes.
Cardiovasc Res. 2008 Jan 15;77(2):432-41. doi: 10.1093/cvr/cvm047. Epub 2007 Oct 25.
10
Excitation-contraction coupling and mitochondrial energetics.
Basic Res Cardiol. 2007 Sep;102(5):369-92. doi: 10.1007/s00395-007-0666-z. Epub 2007 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验