Wei An-Chi, Liu Ting, Cortassa Sonia, Winslow Raimond L, O'Rourke Brian
Department of Biomedical Engineering, Institute of Computational Medicine, The Johns Hopkins University, Baltimore MD 21205-2195, USA.
Biochim Biophys Acta. 2011 Jul;1813(7):1373-81. doi: 10.1016/j.bbamcr.2011.02.012. Epub 2011 Feb 26.
Ca(2+) plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca(2+) is controlled primarily by the mitochondrial Ca(2+) uniporter and the mitochondrial Na(+)/Ca(2+) exchanger, influencing NADH production through Ca(2+)-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca(2+)-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca(2+) release. Here we selectively measure Ca(2+) influx rate through the mitochondrial Ca(2+) uniporter and Ca(2+) efflux rates through Na(+)-dependent and Na(+)-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na(+)/Ca(2+) exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨ(m) loss, Ca(2+) release, NADH oxidation, swelling) of high extramitochondrial Ca(2+) additions, allowing mitochondria to tolerate total mitochondrial Ca(2+) loads of >400nmol/mg protein. For Ca(2+) pulses up to 15μM, Na(+)-independent Ca(2+) efflux through the permeability transition pore accounted for ~5% of the total Ca(2+) efflux rate compared to that mediated by the mitochondrial Na(+)/Ca(2+) exchanger (in 5mM Na(+)). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na(+)/Ca(2+) exchanger-mediated Ca(2+) efflux at higher concentrations (IC(50)=2μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~40% at 10μM cyclosporine A, while having no effect on the mitochondrial Ca(2+) uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca(2+) load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
钙离子(Ca(2+))通过将兴奋-收缩偶联的变化传递给线粒体氧化磷酸化,在心肌细胞的能量供需匹配中发挥核心作用。线粒体基质中的钙离子主要由线粒体钙离子单向转运体和线粒体钠/钙交换体控制,通过三羧酸循环中对钙离子敏感的脱氢酶影响烟酰胺腺嘌呤二核苷酸(NADH)的产生。除了钙离子触发的线粒体通透性转换孔在细胞死亡中被广泛认可的作用外,有人提出通透性转换孔也可能参与生理性线粒体钙离子释放。在此,我们在有或没有线粒体钠/钙交换体抑制剂(CGP 37157)或通透性转换孔抑制剂(环孢素A)的情况下,选择性测量分离的豚鼠心脏线粒体中通过线粒体钙离子单向转运体的钙离子内流速率以及通过钠依赖性和非钠依赖性途径的钙离子外流速率。环孢素A抑制了高线粒体外钙离子添加所带来的负面生物能量学后果(线粒体膜电位(ΔΨ(m))丧失、钙离子释放、NADH氧化、肿胀),使线粒体能够耐受大于400nmol/mg蛋白质的线粒体总钙离子负荷。对于高达15μM的钙离子脉冲,与线粒体钠/钙交换体(在5mM钠离子存在下)介导的钙离子外流速率相比,通过通透性转换孔的非钠依赖性钙离子外流占总钙离子外流速率的约5%。出乎意料的是,我们还观察到,与抑制通透性转换孔所需的浓度相比,环孢素A在更高浓度(半数抑制浓度(IC(50))=2μM)时抑制线粒体钠/钙交换体介导的钙离子外流,在10μM环孢素A时最大抑制约40%,而对线粒体钙离子单向转运体没有影响。结果表明了一种环孢素A可能影响心肌细胞线粒体钙离子负荷的潜在替代机制,这可能解释了环孢素A在高浓度时的矛盾毒性作用。本文是名为“线粒体与心脏保护”的特刊的一部分。