Maack Christoph, O'Rourke Brian
Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg/Saar, Germany.
Basic Res Cardiol. 2007 Sep;102(5):369-92. doi: 10.1007/s00395-007-0666-z. Epub 2007 Jul 27.
Cardiac excitation-contraction (EC) coupling consumes vast amounts of cellular energy, most of which is produced in mitochondria by oxidative phosphorylation. In order to adapt the constantly varying workload of the heart to energy supply, tight coupling mechanisms are essential to maintain cellular pools of ATP, phosphocreatine and NADH. To our current knowledge, the most important regulators of oxidative phosphorylation are ADP, Pi, and Ca2+. However, the kinetics of mitochondrial Ca2+-uptake during EC coupling are currently a matter of intense debate. Recent experimental findings suggest the existence of a mitochondrial Ca2+ microdomain in cardiac myocytes, justified by the close proximity of mitochondria to the sites of cellular Ca2+ release, i. e., the ryanodine receptors of the sarcoplasmic reticulum. Such a Ca2+ microdomain could explain seemingly controversial results on mitochondrial Ca2+ uptake kinetics in isolated mitochondria versus whole cardiac myocytes. Another important consideration is that rapid mitochondrial Ca2+ uptake facilitated by microdomains may shape cytosolic Ca2+ signals in cardiac myocytes and have an impact on energy supply and demand matching. Defects in EC coupling in chronic heart failure may adversely affect mitochondrial Ca2+ uptake and energetics, initiating a vicious cycle of contractile dysfunction and energy depletion. Future therapeutic approaches in the treatment of heart failure could be aimed at interrupting this vicious cycle.
心脏兴奋-收缩(EC)偶联消耗大量细胞能量,其中大部分能量是由线粒体通过氧化磷酸化产生的。为了使心脏不断变化的工作负荷与能量供应相适应,紧密的偶联机制对于维持细胞内ATP、磷酸肌酸和NADH的储备至关重要。就我们目前所知,氧化磷酸化的最重要调节因子是ADP、Pi和Ca2+。然而,EC偶联期间线粒体Ca2+摄取的动力学目前是一个激烈争论的问题。最近的实验结果表明,心肌细胞中存在线粒体Ca2+微区,这是由线粒体与细胞Ca2+释放位点(即肌浆网的ryanodine受体)的紧密接近所证明的。这样一个Ca2+微区可以解释在分离的线粒体与完整心肌细胞中线粒体Ca2+摄取动力学方面看似矛盾的结果。另一个重要的考虑因素是,微区促进的快速线粒体Ca2+摄取可能会塑造心肌细胞中的胞质Ca2+信号,并对能量供需匹配产生影响。慢性心力衰竭中EC偶联的缺陷可能会对线粒体Ca2+摄取和能量代谢产生不利影响,引发收缩功能障碍和能量耗竭的恶性循环。未来治疗心力衰竭的方法可能旨在打断这个恶性循环。