Suppr超能文献

荧光假单胞菌通过精细的代谢平衡作用来对抗铝毒性。

Pseudomonas fluorescens orchestrates a fine metabolic-balancing act to counter aluminium toxicity.

机构信息

Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, Canada, P3E 2C6.

出版信息

Environ Microbiol. 2010 Jun;12(6):1384-90. doi: 10.1111/j.1462-2920.2010.02200.x. Epub 2010 Mar 25.

Abstract

Aluminium (Al), an environmental toxin, is known to disrupt cellular functions by perturbing iron (Fe) homeostasis. However, Fe is essential for such metabolic processes as the tricarboxylic acid (TCA) cycle and oxidative phosphorylation, the two pivotal networks that mediate ATP production during aerobiosis. To counter the Fe conundrum induced by Al toxicity, Pseudomonas fluorescens utilizes isocitrate lyase and isocitrate dehydrogenase-NADP dependent to metabolize citrate when confronted with an ineffective aconitase provoked by Al stress. By invoking fumarase C, a hydratase devoid of Fe, this microbe is able to generate essential metabolites. To compensate for the severely diminished enzymes like Complex I, Complex II and Complex IV, the upregulation of a H(2)O-generating NADH oxidase enables the metabolism of citrate, the sole carbon source via a modified TCA cycle. The overexpression of succinyl-CoA synthetase affords an effective route to ATP production by substrate-level phosphorylation in the absence of O(2). This fine metabolic balance enables P. fluorescens to survive the dearth of bioavailable Fe triggered by an Al environment, a feature that may have potential applications in bioremediation technologies.

摘要

铝(Al)是一种环境毒素,已知通过扰乱铁(Fe)稳态来破坏细胞功能。然而,Fe 对于三羧酸(TCA)循环和氧化磷酸化等代谢过程是必不可少的,这两个关键网络在需氧条件下介导 ATP 的产生。为了应对铝毒性引起的 Fe 难题,荧光假单胞菌利用异柠檬酸裂解酶和依赖异柠檬酸脱氢酶-NADP 将柠檬酸代谢,当遇到由铝胁迫引起的无效的乌头酸酶时。通过调用缺乏 Fe 的水合酶富马酸酶 C,这种微生物能够生成必需的代谢物。为了补偿严重减少的酶,如复合物 I、复合物 II 和复合物 IV,上调生成 H₂O 的 NADH 氧化酶使柠檬酸代谢成为可能,柠檬酸是通过改良的 TCA 循环唯一的碳源。通过底物水平磷酸化,琥珀酰辅酶 A 合成酶的过表达为在没有 O₂的情况下生成 ATP 提供了有效的途径。这种精细的代谢平衡使荧光假单胞菌能够在铝环境引发的生物可用 Fe 缺乏的情况下存活,这一特性可能在生物修复技术中有潜在的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验