Suppr超能文献

微生物系统引发的代谢重构以净化铝:对生物修复技术的启示。

Metabolic reengineering invoked by microbial systems to decontaminate aluminum: implications for bioremediation technologies.

机构信息

Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Ontario, Canada P3E 2C6.

出版信息

Biotechnol Adv. 2013 Mar-Apr;31(2):266-73. doi: 10.1016/j.biotechadv.2012.11.008. Epub 2012 Nov 29.

Abstract

As our reliance on aluminum (Al) increases, so too does its presence in the environment and living systems. Although generally recognized as safe, its interactions with most living systems have been nefarious. This review presents an overview of the noxious effects of Al and how a subset of microbes can rework their metabolic pathways in order to survive an Al-contaminated environment. For instance, in order to expulse the metal as an insoluble precipitate, Pseudomonas fluorescens shuttles metabolites toward the production of organic acids and lipids that play key roles in chelating, immobilizing and exuding Al. Further, the reconfiguration of metabolic modules enables the microorganism to combat the dearth of iron (Fe) and the excess of reactive oxygen species (ROS) promoted by Al toxicity. While in Rhizobium spp., exopolysaccharides have been invoked to sequester this metal, an ATPase is known to safeguard Anoxybacillus gonensis against the trivalent metal. Hydroxyl, carboxyl and phosphate moieties have also been exploited by microbes to trap Al. Hence, an understanding of the metabolic networks that are operative in microorganisms residing in polluted environments is critical in devising bioremediation technologies aimed at managing metal wastes. Metabolic engineering is essential in elaborating effective biotechnological processes to decontaminate metal-polluted surroundings.

摘要

随着我们对铝(Al)的依赖增加,它在环境和生命系统中的存在也越来越多。尽管铝通常被认为是安全的,但它与大多数生命系统的相互作用却是有害的。本文综述了铝的毒性作用,以及一部分微生物如何改变其代谢途径,以在受铝污染的环境中生存。例如,为了将金属排出体外形成不溶性沉淀,荧光假单胞菌将代谢物转移到有机酸和脂质的生产中,这些酸和脂质在螯合、固定和排出铝方面发挥着关键作用。此外,代谢模块的重新配置使微生物能够应对铝毒性引起的铁(Fe)缺乏和活性氧(ROS)过剩。在根瘤菌属中,多糖被用来隔离这种金属,而一种 ATP 酶被认为可以保护 Gonensis 芽孢杆菌免受三价金属的侵害。羟基、羧基和磷酸基团也被微生物用来捕获铝。因此,了解生活在污染环境中的微生物的代谢网络对于设计旨在管理金属废物的生物修复技术至关重要。代谢工程对于制定有效的生物技术过程来净化金属污染的环境至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验