Suppr超能文献

标准值变化对低频率强化程序表现的差异强化效果。

The effect of changes in criterion value on differential reinforcement of low rate schedule performance.

机构信息

Bucknell University.

出版信息

J Exp Anal Behav. 2009 Sep;92(2):181-98. doi: 10.1901/jeab.2009.92-181.

Abstract

The differential reinforcement of low rate (DRL) schedule is commonly used to assess impulsivity, hyperactivity, and the cognitive effects of pharmacological treatments on performance. A DRL schedule requires subjects to wait a certain minimum amount of time between successive responses to receive reinforcement. The DRL criterion value, which specifies the minimum wait time between responses, is often shifted towards increasingly longer values over the course of training. However, the process invoked by shifting DRL values is poorly understood. Experiment 1 compared performance on a DRL 30-s schedule versus a DRL 15-s schedule that was later shifted to a DRL 30-s schedule. Dependent measures assessing interresponse time (IRT) production and reward-earning efficiency showed significant detrimental effects following a DRL schedule transition in comparison with the performance on a maintained DRL 30-s schedule. Experiments 2a and 2b assessed the effects of small incremental changes vs. a sudden large shift in the DRL criterion on performance. The incremental changes produced little to no disruption in performance compared to a sudden large shift. The results indicate that the common practice of incrementing the DRL criterion over sessions may be an inefficient means of training stable DRL performance.

摘要

差频强化率(DRL)方案常用于评估冲动性、多动性和药物治疗对行为表现的认知影响。DRL 方案要求受试者在连续反应之间等待一定的最小时间间隔才能获得强化。DRL 标准值指定了反应之间的最小等待时间,通常在训练过程中逐渐向更长的值转移。然而,DRL 值转移所涉及的过程尚未被充分理解。实验 1 比较了在 DRL 30-s 方案和随后转移到 DRL 30-s 方案的 DRL 15-s 方案上的表现。评估间隔反应时间(IRT)产生和奖励赚取效率的依赖指标显示,与维持的 DRL 30-s 方案相比,DRL 方案转换后表现出显著的不利影响。实验 2a 和 2b 评估了 DRL 标准的小增量变化与突然的大变化对表现的影响。与突然的大转变相比,增量变化对表现几乎没有产生任何干扰。结果表明,在多个时间段内逐渐增加 DRL 标准值的常见做法可能是训练稳定 DRL 表现的低效手段。

相似文献

1
The effect of changes in criterion value on differential reinforcement of low rate schedule performance.
J Exp Anal Behav. 2009 Sep;92(2):181-98. doi: 10.1901/jeab.2009.92-181.
2
Timing and space usage are disrupted by amphetamine in rats maintained on DRL 24-s and DRL 72-s schedules of reinforcement.
Psychopharmacology (Berl). 2009 Jun;204(2):213-25. doi: 10.1007/s00213-008-1451-x. Epub 2009 Jan 14.
4
Differential effects of imipramine in rats as a function of DRL schedule value.
Pharmacol Biochem Behav. 1980 Nov;13(5):691-4. doi: 10.1016/0091-3057(80)90013-1.
5
Temporal regulation of children with autism spectrum disorder exposed to a differential-reinforcement-of low-rates schedule.
J Exp Anal Behav. 2020 May;113(3):515-529. doi: 10.1002/jeab.592. Epub 2020 Mar 22.
6
DRL performance of spontaneously hypertensive rats: dissociation of timing and inhibition of responses.
Behav Brain Res. 2009 Jul 19;201(1):158-65. doi: 10.1016/j.bbr.2009.02.016. Epub 2009 Feb 23.
9
EFFECTS OF A DRL CONTINGENCY ADDED TO A FIXED-INTERVAL REINFORCEMENT SCHEDULE.
J Exp Anal Behav. 1964 Nov;7(6):391-9. doi: 10.1901/jeab.1964.7-391.
10
Response disinhibition evoked by the administration of nicotine and nicotine-associated contextual cues.
Drug Alcohol Depend. 2009 Nov 1;105(1-2):97-108. doi: 10.1016/j.drugalcdep.2009.06.018. Epub 2009 Jul 28.

引用本文的文献

1
Mechanisms of impulsive choice: Experiments to explore and models to map the empirical terrain.
Learn Behav. 2023 Dec;51(4):355-391. doi: 10.3758/s13420-023-00577-1. Epub 2023 Mar 13.
2
Cognitive and behavioral training interventions to promote self-control.
J Exp Psychol Anim Learn Cogn. 2019 Jul;45(3):259-279. doi: 10.1037/xan0000208. Epub 2019 May 9.
3
Differential reinforcement of low rates differentially decreased timing precision.
Behav Processes. 2018 Jun;151:111-118. doi: 10.1016/j.beproc.2018.02.022. Epub 2018 Mar 30.
6
KU32 prevents 5-fluorouracil induced cognitive impairment.
Behav Brain Res. 2017 Jun 30;329:186-190. doi: 10.1016/j.bbr.2017.03.042. Epub 2017 Mar 27.
7
Mechanisms of Individual Differences in Impulsive and Risky Choice in Rats.
Comp Cogn Behav Rev. 2015;10:45-72. doi: 10.3819/ccbr.2015.100003.
8
Neural substrates underlying effort, time, and risk-based decision making in motivated behavior.
Neurobiol Learn Mem. 2016 Sep;133:233-256. doi: 10.1016/j.nlm.2016.07.015. Epub 2016 Jul 15.
9
Mechanisms of impulsive choice: II. Time-based interventions to improve self-control.
Behav Processes. 2015 Mar;112:29-42. doi: 10.1016/j.beproc.2014.10.010. Epub 2014 Oct 30.
10
Variable delay-to-signal: a fast paradigm for assessment of aspects of impulsivity in rats.
Front Behav Neurosci. 2013 Oct 23;7:154. doi: 10.3389/fnbeh.2013.00154. eCollection 2013.

本文引用的文献

1
Tracking of the expected time to reinforcement in temporal conditioning procedures.
Learn Behav. 2003 Feb;31(1):3-21. doi: 10.3758/bf03195967.
2
Amphetamine affects the start of responding in the peak interval timing task.
Behav Processes. 2007 Feb 22;74(2):168-75. doi: 10.1016/j.beproc.2006.11.005. Epub 2006 Nov 30.
3
Impulsive responding on the peak-interval procedure.
Behav Processes. 2007 Feb 22;74(2):198-208. doi: 10.1016/j.beproc.2006.08.009. Epub 2006 Oct 4.
4
Differential effects of cocaine and ketamine on time estimation: implications for neurobiological models of interval timing.
Pharmacol Biochem Behav. 2006 Sep;85(1):114-22. doi: 10.1016/j.pbb.2006.07.019. Epub 2006 Aug 21.
5
Interresponse time as a function of continuous variables: a new method and some data.
J Exp Anal Behav. 1963 Apr;6(2):237-46. doi: 10.1901/jeab.1963.6-237.
6
SOME PROPERTIES OF SPACED RESPONDING IN PIGEONS.
J Exp Anal Behav. 1965 Jan;8(1):19-27. doi: 10.1901/jeab.1965.8-19.
7
Technique for assessing the effects of drugs on timing behavior.
Science. 1955 Nov 11;122(3176):925. doi: 10.1126/science.122.3176.925.
8
Impaired DRL 30 performance during amphetamine withdrawal.
Behav Brain Res. 2003 Jul 14;143(1):101-8. doi: 10.1016/s0166-4328(03)00035-4.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验