Aguas H, Filonovich S A, Bernacka-Wojcik I, Fortunato E, Martins R
Departamento de Ciência dos Materiais, FCT-UNL, Cenimat-13N, Campus de Caparica, 2829-516 Caparica, Portugal.
J Nanosci Nanotechnol. 2010 Apr;10(4):2547-51. doi: 10.1166/jnn.2010.1434.
Trimethylboron (TMB) has been receiving attention as a valid alternative to diborane and methane mixtures for the deposition of p-type silicon films for applications in optoelectronic devices such as solar cells. In this paper we report on p-type hydrogenated nanocrystalline silicon carbide (nc-Si:C:H) films produced by standard 13.56 MHz plasma enhanced chemical vapour deposition technique, using TMB as gas source, under high hydrogen dilution (98%) and using high deposition pressures (3 Torr). The films obtained were characterized by spectroscopic ellipsometry (SE), Raman spectroscopy (RS), and electrical measurements to determine their optical, structural and electrical properties. We achieved conductivities as high as 8.3 (omega cm)(-1), one of the highest values of conductivity published to date using TMB with standard rf-PECVD. Spectroscopic ellipsometry modeling revealed that the films growth mechanism proceeds through a sub-surface layer mechanism that leads to the formation of nanocrystalline silicon.
三甲基硼(TMB)作为乙硼烷和甲烷混合物的有效替代品,在用于太阳能电池等光电器件的p型硅膜沉积方面受到了关注。在本文中,我们报告了采用标准的13.56 MHz等离子体增强化学气相沉积技术,以TMB作为气体源,在高氢气稀释度(98%)和高沉积压力(3托)下制备的p型氢化纳米晶硅碳(nc-Si:C:H)薄膜。通过光谱椭偏仪(SE)、拉曼光谱(RS)和电学测量对所得薄膜进行了表征,以确定其光学、结构和电学性质。我们实现了高达8.3(Ω·cm)⁻¹的电导率,这是迄今为止使用TMB通过标准射频等离子体增强化学气相沉积法公布的最高电导率值之一。光谱椭偏仪建模表明,薄膜的生长机制通过次表面层机制进行,该机制导致纳米晶硅的形成。