Suppr超能文献

Humoral factors reduce gap junction sensitivity to cytoplasmic pH. II. In vitro manipulations.

作者信息

Moreno A P, Arellano R O, Rivera A, Ramón F

机构信息

Departamento de Fisiología Biofísica, Centro de Investigación y Estudios Avanzados, Mexico DF.

出版信息

Am J Physiol. 1991 May;260(5 Pt 1):C1039-45. doi: 10.1152/ajpcell.1991.260.5.C1039.

Abstract

Our previous studies demonstrated a diurnal rhythm in the response of gap junctions between crayfish giant axons to acidification and that the response was reduced after eyestalk ablation, sinus gland removal, or visual stress. In this paper we describe experiments to test whether compounds in the circulating hemolymph were responsible for modulation of the responsiveness gap junction channels to intracellular pH. In axons from destalked animals in which the hemolymph had been replaced with normal saline, the maximal junctional resistance after acidification (Rjmax) reached control values. In contrast, Rjmax reached only 30% of control after acidification in axons from animals that had been destalked but not perfused. Hemolymph drawn after eyestalk ablation was tested on axons from control animals. Treatment with hemolymph drawn 1 day after destalking resulted in control Rjmax values, while treatment with hemolymph drawn 7 days after destalking resulted in Rjmax values of only 5-40%. Similarly, pretreatment for 1 h with 100 microM ecdysterone resulted in low Rjmax values. These experimental results suggest that a circulating compound, most likely ecdysterone or a related molecule, regulates the physiological properties of gap junctions from crayfish lateral axons.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验