Suppr超能文献

营养供应促进了采采蝇(双翅目:舌蝇科)共生体之间的体内平衡。

Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts.

机构信息

Department of Biology, West Virginia University, 53 Campus Drive 5106 LSB, Morgantown, WV 26506, USA.

出版信息

Proc Biol Sci. 2010 Aug 7;277(1692):2389-97. doi: 10.1098/rspb.2010.0364. Epub 2010 Mar 31.

Abstract

Host-associated microbial interactions may involve genome complementation, driving-enhanced communal efficiency and stability. The tsetse fly (Diptera: Glossinidae), the obligate vector of African trypanosomes (Trypanosoma brucei subspp.), harbours two enteric Gammaproteobacteria symbionts: Wigglesworthia glossinidia and Sodalis glossinidius. Host coevolution has streamlined the Wigglesworthia genome to complement the exclusively sanguivorous tsetse lifestyle. Comparative genomics reveal that the Sodalis genome contains the majority of Wigglesworthia genes. This significant genomic overlap calls into question why tsetse maintains the coresidence of both symbionts and, furthermore, how symbiont homeostasis is maintained. One of the few distinctions between the Wigglesworthia and Sodalis genomes lies in thiamine biosynthesis. While Wigglesworthia can synthesize thiamine, Sodalis lacks this capability but retains a thiamine ABC transporter (tbpAthiPQ) believed to salvage thiamine. This genetic complementation may represent the early convergence of metabolic pathways that may act to retain Wigglesworthia and evade species antagonism. We show that thiamine monophosphate, the specific thiamine derivative putatively synthesized by Wigglesworthia, impacts Sodalis thiamine transporter expression, proliferation and intracellular localization. A greater understanding of tsetse symbiont interactions may generate alternative control strategies for this significant medical and agricultural pest, while also providing insight into the evolution of microbial associations within hosts.

摘要

宿主相关的微生物相互作用可能涉及基因组互补,从而提高共生效率和稳定性。采采蝇(双翅目:舌蝇科)是非洲锥虫(布氏锥虫亚种)的专性载体,它携带有两种肠型γ变形菌共生体:Wigglesworthia glossinidia 和 Sodalis glossinidius。宿主的共同进化使 Wigglesworthia 基因组得以简化,以补充采采蝇专性吸血的生活方式。比较基因组学揭示,Sodalis 基因组包含了大部分 Wigglesworthia 基因。这种显著的基因组重叠引发了一个问题,即采采蝇为何维持这两种共生体的共同存在,以及共生体的内稳定是如何维持的。Wigglesworthia 和 Sodalis 基因组之间的少数区别之一在于硫胺素生物合成。虽然 Wigglesworthia 可以合成硫胺素,但 Sodalis 缺乏这种能力,但保留了一种被认为可以挽救硫胺素的硫胺素 ABC 转运蛋白(tbpAthiPQ)。这种遗传互补可能代表了代谢途径的早期趋同,这可能有助于保留 Wigglesworthia 并避免物种拮抗。我们表明,硫胺素单磷酸,即 Wigglesworthia 可能合成的特定硫胺素衍生物,会影响 Sodalis 硫胺素转运蛋白的表达、增殖和细胞内定位。对采采蝇共生体相互作用的更深入了解,可能会为这种重要的医学和农业害虫提供替代的控制策略,同时也为宿主内微生物共生关系的进化提供了新的见解。

相似文献

1
Nutrient provisioning facilitates homeostasis between tsetse fly (Diptera: Glossinidae) symbionts.
Proc Biol Sci. 2010 Aug 7;277(1692):2389-97. doi: 10.1098/rspb.2010.0364. Epub 2010 Mar 31.
5
The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly.
Appl Environ Microbiol. 2008 Oct;74(19):5965-74. doi: 10.1128/AEM.00741-08. Epub 2008 Aug 8.
7
"Wigglesworthia morsitans" Folate (Vitamin B9) Biosynthesis Contributes to Tsetse Host Fitness.
Appl Environ Microbiol. 2015 Aug 15;81(16):5375-86. doi: 10.1128/AEM.00553-15. Epub 2015 May 29.
8
Tissue distribution and transmission routes for the tsetse fly endosymbionts.
J Invertebr Pathol. 2013 Mar;112 Suppl(0):S116-22. doi: 10.1016/j.jip.2012.04.002. Epub 2012 Apr 19.
10
Interactions among multiple genomes: tsetse, its symbionts and trypanosomes.
Insect Biochem Mol Biol. 2005 Jul;35(7):691-8. doi: 10.1016/j.ibmb.2005.02.012. Epub 2005 Mar 28.

引用本文的文献

3
Draft genome sequence of "palpalis gambiensis" isolate.
Microbiol Resour Announc. 2024 Feb 15;13(2):e0091223. doi: 10.1128/mra.00912-23. Epub 2024 Jan 11.
4
Prevalence of Spiroplasma and interaction with wild Glossina tachinoides microbiota.
Parasite. 2023;30:62. doi: 10.1051/parasite/2023064. Epub 2023 Dec 19.
6
Marine vampires: Persistent, internal associations between bacteria and blood-feeding marine annelids and crustaceans.
Front Microbiol. 2023 Jan 11;13:1113237. doi: 10.3389/fmicb.2022.1113237. eCollection 2022.
7
Involvement of Microbiota in Insect Physiology: Focus on B Vitamins.
mBio. 2023 Feb 28;14(1):e0222522. doi: 10.1128/mbio.02225-22. Epub 2022 Dec 13.
8
: A new lineage of highly reduced endosymbionts coevolving with chipmunk lice of the genus .
Front Microbiol. 2022 Aug 1;13:900312. doi: 10.3389/fmicb.2022.900312. eCollection 2022.
9
The Tsetse Metabolic Gambit: Living on Blood by Relying on Symbionts Demands Synchronization.
Front Microbiol. 2022 Jun 9;13:905826. doi: 10.3389/fmicb.2022.905826. eCollection 2022.

本文引用的文献

1
Wolbachia as a bacteriocyte-associated nutritional mutualist.
Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):769-74. doi: 10.1073/pnas.0911476107. Epub 2009 Dec 22.
2
Interactions between mutualist Wigglesworthia and tsetse peptidoglycan recognition protein (PGRP-LB) influence trypanosome transmission.
Proc Natl Acad Sci U S A. 2009 Jul 21;106(29):12133-8. doi: 10.1073/pnas.0901226106. Epub 2009 Jul 8.
3
Genomics and evolution of heritable bacterial symbionts.
Annu Rev Genet. 2008;42:165-90. doi: 10.1146/annurev.genet.41.110306.130119.
4
An insect symbiosis is influenced by bacterium-specific polymorphisms in outer-membrane protein A.
Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15088-93. doi: 10.1073/pnas.0805666105. Epub 2008 Sep 24.
5
The obligate mutualist Wigglesworthia glossinidia influences reproduction, digestion, and immunity processes of its host, the tsetse fly.
Appl Environ Microbiol. 2008 Oct;74(19):5965-74. doi: 10.1128/AEM.00741-08. Epub 2008 Aug 8.
6
Analysis of milk gland structure and function in Glossina morsitans: milk protein production, symbiont populations and fecundity.
J Insect Physiol. 2008 Aug;54(8):1236-42. doi: 10.1016/j.jinsphys.2008.06.008. Epub 2008 Jul 4.
7
An ecological and evolutionary perspective on human-microbe mutualism and disease.
Nature. 2007 Oct 18;449(7164):811-8. doi: 10.1038/nature06245.
8
The effect of starvation on the susceptibility of teneral and non-teneral tsetse flies to trypanosome infection.
Med Vet Entomol. 2006 Dec;20(4):388-92. doi: 10.1111/j.1365-2915.2006.00644.x.
10
Interspecific transfer of bacterial endosymbionts between tsetse fly species: infection establishment and effect on host fitness.
Appl Environ Microbiol. 2006 Nov;72(11):7013-21. doi: 10.1128/AEM.01507-06. Epub 2006 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验