Suppr超能文献

膳食钾摄入减少会刺激肾脏中超氧阴离子的产生,并抑制 CCD 中的钾分泌通道。

Decrease in dietary K intake stimulates the generation of superoxide anions in the kidney and inhibits K secretory channels in the CCD.

机构信息

Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA.

出版信息

Am J Physiol Renal Physiol. 2010 Jun;298(6):F1515-22. doi: 10.1152/ajprenal.00502.2009. Epub 2010 Mar 31.

Abstract

We previously demonstrated that K depletion inhibited ROMK-like small-conductance K channels (SK) in the cortical collecting duct (CCD) and that the effect was mediated by superoxide anions that stimulated Src family protein tyrosine kinase (PTK) and mitogen-activated protein kinase (MAPK) (51). However, because animals on a K-deficient diet had a severe hypokalemia, superoxide-dependent signaling may not regulate ROMK channels under physiological conditions with a normal plasma K concentration. In the present study, we used the patch-clamp technique and Western blot to examine the effect of a moderate K restriction on ROMK-like SK channels and the role of PTK and MAPK in regulating apical K channels in the CCD of animals on a low-K diet (LK; 0.1% K). Rats and mice fed a LK diet for 7 days had a normal plasma K concentration. However, a LK intake increased the expression of angiotensin II type 1 receptor in the kidney. Moreover, patch-clamp experiments demonstrated that LK intake decreased the probability finding SK channels and channel activity defined by NP(o) (a product of channel number and open probability) in the CCD of both rat and mouse kidneys. Also, LK intake significantly stimulated the production of superoxide anions in the renal cortex and outer medulla in both rats and mice and increased superoxide level in the rat CCD. Moreover, LK intake augments the phosphorylation of p38 and ERK MAPK, the expression of c-Src and tyrosine phosphorylation of ROMK channels. However, treatment of animals with tempol abolished the effect of LK intake on MAPK and c-Src and increased ROMK channel activity in comparing with those of nontreated rats on a LK diet. Inhibiting p38 and ERK with SB202190 and PD98059 significantly stimulated SK in the CCD in rats on a LK diet. In addition, inhibition of PTK with herbimycin A activated SK channels in the CCD from rats on a LK diet. We conclude that LK intake stimulates the generation of superoxide anion and related products and that MAPK and Src family PTK play a physiological role in inhibiting apical K channels in the principal cells in response to LK intake.

摘要

我们之前已经证明,在皮质集合管(CCD)中,钾缺乏会抑制 ROMK 样小电导钾通道(SK),这种作用是由超氧阴离子介导的,超氧阴离子会刺激原癌基因 Src 家族蛋白酪氨酸激酶(PTK)和丝裂原活化蛋白激酶(MAPK)(51)。然而,由于低钾饮食的动物患有严重的低钾血症,因此在正常血浆钾浓度的生理条件下,超氧阴离子依赖性信号可能不会调节 ROMK 通道。在本研究中,我们使用膜片钳技术和 Western blot 检测了中度钾限制对 CCD 中 ROMK 样 SK 通道的影响,以及 PTK 和 MAPK 在调节低钾饮食(LK;0.1%K)动物的顶端钾通道中的作用。喂养 LK 饮食 7 天的大鼠和小鼠具有正常的血浆钾浓度。然而,LK 摄入增加了肾脏中血管紧张素 II 型 1 受体的表达。此外,膜片钳实验表明,LK 摄入降低了大鼠和小鼠肾脏 CCD 中 SK 通道的概率发现和通道活性(由通道数量和开放概率的乘积 NP(o)定义)。此外,LK 摄入显著刺激了大鼠和小鼠肾脏皮质和外髓质中超氧阴离子的产生,并增加了大鼠 CCD 中的超氧水平。此外,LK 摄入增加了 p38 和 ERK MAPK 的磷酸化、c-Src 的表达和 ROMK 通道的酪氨酸磷酸化。然而,与 LK 饮食的未处理大鼠相比,用 tempol 处理动物可消除 LK 摄入对 MAPK 和 c-Src 的影响,并增加 ROMK 通道活性。用 SB202190 和 PD98059 抑制 p38 和 ERK 可显著刺激 LK 饮食大鼠 CCD 中的 SK。此外,用 herbimycin A 抑制 PTK 可激活 LK 饮食大鼠 CCD 中的 SK 通道。我们得出结论,LK 摄入刺激超氧阴离子和相关产物的产生,MAPK 和 Src 家族 PTK 在响应 LK 摄入抑制主细胞顶端钾通道方面发挥生理作用。

相似文献

1
Decrease in dietary K intake stimulates the generation of superoxide anions in the kidney and inhibits K secretory channels in the CCD.
Am J Physiol Renal Physiol. 2010 Jun;298(6):F1515-22. doi: 10.1152/ajprenal.00502.2009. Epub 2010 Mar 31.
2
Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct.
J Am Soc Nephrol. 2006 Oct;17(10):2687-96. doi: 10.1681/ASN.2006050426. Epub 2006 Sep 13.
3
K restriction inhibits protein phosphatase 2B (PP2B) and suppression of PP2B decreases ROMK channel activity in the CCD.
Am J Physiol Cell Physiol. 2008 Mar;294(3):C765-73. doi: 10.1152/ajpcell.00528.2007. Epub 2008 Jan 9.
4
PGE2 inhibits apical K channels in the CCD through activation of the MAPK pathway.
Am J Physiol Renal Physiol. 2007 Oct;293(4):F1299-307. doi: 10.1152/ajprenal.00293.2007. Epub 2007 Aug 8.
6
Inhibition of phosphatidylinositol 3-kinase stimulates activity of the small-conductance K channel in the CCD.
Am J Physiol Renal Physiol. 2006 Apr;290(4):F806-12. doi: 10.1152/ajprenal.00352.2005. Epub 2005 Oct 4.
7
Protein tyrosine kinase regulates the number of renal secretory K channels.
Am J Physiol Renal Physiol. 2000 Jan;278(1):F165-71. doi: 10.1152/ajprenal.2000.278.1.F165.
8
Inhibition of angiotensin type 1 receptor impairs renal ability of K conservation in response to K restriction.
Am J Physiol Renal Physiol. 2009 May;296(5):F1179-84. doi: 10.1152/ajprenal.90725.2008. Epub 2009 Feb 11.
9
PKC expression is regulated by dietary K intake and mediates internalization of SK channels in the CCD.
Am J Physiol Renal Physiol. 2004 Jun;286(6):F1072-8. doi: 10.1152/ajprenal.00425.2003.
10
Effect of hydrogen peroxide on ROMK channels in the cortical collecting duct.
Am J Physiol Renal Physiol. 2007 Apr;292(4):F1151-6. doi: 10.1152/ajprenal.00389.2006. Epub 2006 Dec 12.

引用本文的文献

1
High dietary K intake inhibits proximal tubule transport.
Am J Physiol Renal Physiol. 2023 Aug 1;325(2):F224-F234. doi: 10.1152/ajprenal.00013.2023. Epub 2023 Jun 15.
2
Directing two-way traffic in the kidney: A tale of two ions.
J Gen Physiol. 2022 Oct 3;154(10). doi: 10.1085/jgp.202213179. Epub 2022 Sep 1.
3
ROMK channels are inhibited in the aldosterone-sensitive distal nephron of renal tubule Nedd4-2-deficient mice.
Am J Physiol Renal Physiol. 2022 Jan 1;322(1):F55-F67. doi: 10.1152/ajprenal.00306.2021. Epub 2021 Nov 29.
4
Diminished antiproteinuric effect of the angiotensin receptor blocker losartan during high potassium intake in patients with CKD.
Clin Kidney J. 2021 Feb 5;14(10):2170-2176. doi: 10.1093/ckj/sfab031. eCollection 2021 Oct.
6
Rapid development of vasopressin resistance in dietary K deficiency.
Am J Physiol Renal Physiol. 2021 May 1;320(5):F748-F760. doi: 10.1152/ajprenal.00655.2020. Epub 2021 Mar 22.
7
Effects of reactive oxygen species on renal tubular transport.
Am J Physiol Renal Physiol. 2019 Aug 1;317(2):F444-F455. doi: 10.1152/ajprenal.00604.2018. Epub 2019 Jun 19.
8
Potassium conservation is impaired in mice with reduced renal expression of Kir4.1.
Am J Physiol Renal Physiol. 2018 Nov 1;315(5):F1271-F1282. doi: 10.1152/ajprenal.00022.2018. Epub 2018 Aug 15.
9
Potassium Homeostasis: The Knowns, the Unknowns, and the Health Benefits.
Physiology (Bethesda). 2017 Mar;32(2):100-111. doi: 10.1152/physiol.00022.2016.
10
Gut sensing of potassium intake and its role in potassium homeostasis.
Semin Nephrol. 2013 May;33(3):248-56. doi: 10.1016/j.semnephrol.2013.04.005.

本文引用的文献

1
Heme oxygenase-2 deletion causes endothelial cell activation marked by oxidative stress, inflammation, and angiogenesis.
J Pharmacol Exp Ther. 2009 Dec;331(3):925-32. doi: 10.1124/jpet.109.158352. Epub 2009 Sep 22.
2
Inhibition of angiotensin type 1 receptor impairs renal ability of K conservation in response to K restriction.
Am J Physiol Renal Physiol. 2009 May;296(5):F1179-84. doi: 10.1152/ajprenal.90725.2008. Epub 2009 Feb 11.
3
Molecular physiology of the WNK kinases.
Annu Rev Physiol. 2008;70:329-55. doi: 10.1146/annurev.physiol.70.113006.100651.
4
PGE2 inhibits apical K channels in the CCD through activation of the MAPK pathway.
Am J Physiol Renal Physiol. 2007 Oct;293(4):F1299-307. doi: 10.1152/ajprenal.00293.2007. Epub 2007 Aug 8.
5
Role of gp91phox -containing NADPH oxidase in mediating the effect of K restriction on ROMK channels and renal K excretion.
J Am Soc Nephrol. 2007 Jul;18(7):2037-45. doi: 10.1681/ASN.2006121333. Epub 2007 May 30.
6
Intersectin links WNK kinases to endocytosis of ROMK1.
J Clin Invest. 2007 Apr;117(4):1078-87. doi: 10.1172/JCI30087. Epub 2007 Mar 22.
7
Inhibition of MAPK stimulates the Ca2+ -dependent big-conductance K channels in cortical collecting duct.
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19569-74. doi: 10.1073/pnas.0609555104. Epub 2006 Dec 6.
8
Mitogen-activated protein kinases inhibit the ROMK (Kir 1.1)-like small conductance K channels in the cortical collecting duct.
J Am Soc Nephrol. 2006 Oct;17(10):2687-96. doi: 10.1681/ASN.2006050426. Epub 2006 Sep 13.
9
Antagonistic regulation of ROMK by long and kidney-specific WNK1 isoforms.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1615-20. doi: 10.1073/pnas.0510609103. Epub 2006 Jan 20.
10
WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1).
J Physiol. 2006 Mar 1;571(Pt 2):275-86. doi: 10.1113/jphysiol.2005.102202. Epub 2005 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验