Suppr超能文献

手术分类对手术持续时间过程变异性和参数不确定性的影响。

Influence of procedure classification on process variability and parameter uncertainty of surgical case durations.

机构信息

Department of Anesthesia, University of Iowa, Iowa City, IA 52242, USA.

出版信息

Anesth Analg. 2010 Apr 1;110(4):1155-63. doi: 10.1213/ANE.0b013e3181d3e79d.

Abstract

BACKGROUND

Predictive variability of operating room (OR) times influences decision making on the day of surgery including when to start add-on cases, whether to move a case from one OR to another, and where to assign relief staff. One contributor to predictive variability is process variability, which arises among cases of the same procedure(s). Another contributor is parameter uncertainty, which is caused by small sample sizes of historical data.

METHODS

Process variability was quantified using absolute percentage errors of surgeons' bias-corrected estimates of OR time. The influence of procedure classification on process variability was studied using a dataset of 61,353 cases, each with 1 to 5 scheduled and actual Current Procedural Terminology (CPT) codes (i.e., a standardized vocabulary). Parameter uncertainty's sensitivity to sample size was quantified by studying ratios of 90% prediction bounds to medians. That studied dataset of 65,661 cases was used previously to validate a Bayesian method to calculate 90% prediction bounds using combinations of surgeons' scheduled estimates and historical OR times.

RESULTS

(1) Process variability differed significantly among 11 groups of surgical specialty and case urgency (P < 0.0001). For example, absolute percentage errors exceeded the overall median of 22% for 57% of urgent spine surgery cases versus 42% of elective spine surgery cases. (2) Process variability was not increased when scheduled and actual CPTs differed (P = 0.23 without and P = 0.47 with stratification based on the 11 groups), because most differences represented known (planned) options inherent to procedures. (3) Process variability was not associated with incidence of procedures (P = 0.79), after excluding cataract surgery, a procedure with high relative variability. (4) Parameter uncertainty from uncommon procedures (0-2 historical cases) accounted for essentially all of the uncertainty in decisions dependent on estimates of OR times. The Bayesian method moderated the effect of small sample sizes on uncertainty in estimates of OR times. In contrast, from prior work, the use of broad categories of procedures reduces parameter uncertainty but at the expense of increased process variability.

CONCLUSIONS

For procedures with few historic data, the Bayesian method allows for effective case duration prediction, permitting use of detailed procedure descriptions. Although fine resolution of scheduling procedures increases the chance of performed procedure(s) differing from scheduled procedure(s), this does not increase process variability. Future studies need both to address differences in process variability among specialties and accept the limitation that findings from one may not apply to others.

摘要

背景

手术室(OR)时间的预测变异性会影响手术当天的决策,包括何时开始附加手术、是否将手术从一个 OR 转移到另一个 OR 以及在哪里分配替补人员。变异性的一个贡献因素是过程变异性,它出现在同一手术(多个)的情况下。另一个贡献因素是参数不确定性,它是由历史数据的小样本量引起的。

方法

使用外科医生对 OR 时间的偏倚校正估计的绝对百分比误差来量化过程变异性。使用包含 61353 例的数据集研究了手术分类对过程变异性的影响,每例都有 1 到 5 个预定和实际的当前程序术语(CPT)代码(即标准化词汇)。通过研究使用外科医生预定估计和历史 OR 时间组合计算 90%预测区间的贝叶斯方法的 65661 例数据集,量化了参数不确定性对样本量的敏感性,即 90%预测区间与中位数的比值。

结果

(1)在 11 个手术专业和病例紧急程度组之间,过程变异性有显著差异(P < 0.0001)。例如,对于 57%的紧急脊柱手术病例,绝对百分比误差超过整体中位数 22%,而对于 42%的择期脊柱手术病例。(2)当预定和实际 CPT 不同时,过程变异性并没有增加(没有分层时 P = 0.23,有分层时 P = 0.47),因为大多数差异代表了程序中固有的已知(计划)选项。(3)在排除白内障手术(一种相对变异性较高的手术)后,手术过程发生率(P = 0.79)与过程变异性无关。(4)罕见手术(0-2 例历史病例)的参数不确定性几乎占 OR 时间估计不确定性的全部。贝叶斯方法缓和了小样本量对 OR 时间估计不确定性的影响。相比之下,根据先前的工作,使用广泛的手术类别可以减少参数不确定性,但代价是增加过程变异性。

结论

对于历史数据较少的手术,贝叶斯方法可以有效地预测手术持续时间,允许使用详细的手术描述。尽管手术计划的精细分辨率增加了执行的手术与预定手术不同的可能性,但这并不会增加过程变异性。未来的研究需要解决不同专业之间过程变异性的差异,并接受一个事实,即一个专业的发现可能不适用于其他专业。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验