Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano, Cl 73 No. 76A - 354, Medellín, ZIP 050034, Colombia.
Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Cl 73 No. 73A - 226, Medellín, ZIP 050034, Colombia.
J Clin Monit Comput. 2022 Jun;36(3):687-702. doi: 10.1007/s10877-021-00696-y. Epub 2021 Apr 27.
In this work it is proposed a modeling for operating room times based on a Bayesian Hierarchical structure. Specifically, it is employed a Bayesian generalized linear mixed model with an additional hierarchical level on the random effects. This configuration allows the estimation of operating room times (ORT) with few or no historical observations, without requiring a prior surgeon's estimate. In addition to the widely used lognormal distribution, it is also studied the gamma distribution to model the operating room times. For the scale parameters related to the random effects (surgeon and surgical group), which are important quantities in this type of modeling, different kinds of prior distributions such as Half-Cauchy, Sbeta2, and uniform are studied. A Bayesian version of the classical ANOVA is implemented to identify relevant predictors for the operating room times. We find that lognormal models outperform the gamma models in estimating upper prediction bounds (UB). Especially, the best ORT predictions for cases with few or no historical data (i.e., between 0 and 3 historical cases) are obtained with the [Formula: see text], SBeta2 model. With a deviation of less than 1% with respect to the nominal coverage of the upper bound predictions UB80% and UB90% and an average absolute percentage error of 38.5% in the point estimate.
在这项工作中,提出了一种基于贝叶斯层次结构的手术室时间建模方法。具体来说,采用了具有附加随机效应分层级别的贝叶斯广义线性混合模型。这种配置允许在没有历史观测或很少历史观测的情况下估计手术室时间(ORT),而无需事先估算外科医生的手术时间。除了广泛使用的对数正态分布外,还研究了伽马分布来对手术室时间进行建模。对于与随机效应(外科医生和手术组)相关的尺度参数,这是此类建模中的重要参数,研究了不同类型的先验分布,如半柯西分布、Sbeta2 分布和均匀分布。实现了贝叶斯版本的经典方差分析(ANOVA)来识别手术室时间的相关预测因子。我们发现对数正态模型在估计上预测界(UB)方面优于伽马模型。特别是,对于历史数据较少或没有历史数据的病例(即,只有 0 到 3 个历史病例),使用 [公式:见文本]、SBeta2 模型可以获得最佳的 ORT 预测。UB80%和 UB90%的上预测界的名义覆盖率偏差小于 1%,点估计的平均绝对百分比误差为 38.5%。