Kayış Enis, Khaniyev Taghi T, Suermondt Jaap, Sylvester Karl
Department of Industrial Engineering, Bogazici University, Istanbul, Turkey,
Health Care Manag Sci. 2015 Sep;18(3):222-33. doi: 10.1007/s10729-014-9309-8. Epub 2014 Dec 14.
For effective operating room (OR) planning, surgery duration estimation is critical. Overestimation leads to underutilization of expensive hospital resources (e.g., OR time) whereas underestimation leads to overtime and high waiting times for the patients. In this paper, we consider a particular estimation method currently in use and using additional temporal, operational, and staff-related factors provide a statistical model to adjust these estimates for higher accuracy.The results show that our method increases the accuracy of the estimates, in particular by reducing large errors. For the 8093 cases we have in our data, our model decreases the mean absolute deviation of the currently used scheduled duration (42.65 ± 0.59 minutes) by 1.98 ± 0.28 minutes. For the cases with large negative errors, however, the decrease in the mean absolute deviation is 20.35 ± 0.74 minutes (with a respective increase of 0.89 ± 0.66 minutes in large positive errors). We find that not only operational and temporal factors, but also medical staff and team experience related factors (such as number of nurses and the frequency of the medical team working together) could be used to improve the currently used estimates. Finally, we conclude that one could further improve these predictions by combining our model with other good prediction models proposed in the literature. Specifically, one could decrease the mean absolute deviation of 39.98 ± 0.58 minutes obtained via the method of Dexter et al (Anesth Analg 117(1):204-209, 2013) by 1.02 ± 0.21 minutes by combining our method with theirs.
对于有效的手术室(OR)规划而言,手术时长估计至关重要。估计过高会导致昂贵的医院资源(如手术室时间)利用不足,而估计过低则会导致加班以及患者等待时间过长。在本文中,我们考虑了当前正在使用的一种特定估计方法,并利用额外的时间、操作以及与工作人员相关的因素,提供了一个统计模型来调整这些估计,以提高准确性。结果表明,我们的方法提高了估计的准确性,特别是减少了大的误差。对于我们数据中的8093个病例,我们的模型将当前使用的预定时长(42.65±0.59分钟)的平均绝对偏差降低了1.98±0.28分钟。然而,对于具有大的负误差的病例,平均绝对偏差的降低为20.35±0.74分钟(大的正误差相应增加0.89±0.66分钟)。我们发现,不仅操作和时间因素,而且与医务人员和团队经验相关的因素(如护士数量以及医疗团队共同工作的频率)都可用于改进当前使用的估计。最后,我们得出结论,通过将我们的模型与文献中提出的其他良好预测模型相结合,可以进一步改进这些预测。具体而言,通过将我们的方法与Dexter等人(《麻醉与镇痛》117(1):204 - 209, 2013)的方法相结合,可以将通过该方法获得的39.98±0.58分钟的平均绝对偏差降低1.02±0.21分钟。