Suppr超能文献

先来先服务原则再探:影响同一可变剪接事件的因素对内含子去除的相对速率有不同的影响。

First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal.

机构信息

Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland.

出版信息

RNA. 2010 May;16(5):904-12. doi: 10.1261/rna.1993510. Epub 2010 Mar 31.

Abstract

Alternative splicing accounts for much of the complexity in higher eukaryotes. Thus, its regulation must allow for flexibility without hampering either its specificity or its fidelity. The mechanisms involved in alternative splicing regulation, especially those acting through coupling with transcription, have not been deeply studied in in vivo models. Much of our knowledge comes from in vitro approaches, where conditions can be precisely controlled at the expense of losing several levels of regulation present in intact cells. Here we studied the relative order of removal of the introns flanking a model alternative cassette exon. We show that there is a preferential removal of the intron downstream from the cassette exon before the upstream intron has been removed. Most importantly, both cis-acting mutations and trans-acting factors that regulate the model alternative splicing event differentially affect the relative order of removal. However, reduction of transcriptional elongation causing higher inclusion of the cassette exon does not change the order of intron removal, suggesting that the assumption, according to the "first come, first served" model, that slow elongation promotes preferential excision of the upstream intron has to be revised. We propose instead that slow elongation favors commitment to exon inclusion during spliceosome assembly. Our results reveal that measuring the order of intron removal may be a straightforward read-out to discriminate among different mechanisms of alternative splice site selection.

摘要

可变剪接是高等真核生物复杂性的主要原因。因此,其调控必须具有灵活性,而不会损害其特异性或保真度。在体内模型中,可变剪接调控所涉及的机制,特别是那些通过与转录偶联起作用的机制,尚未得到深入研究。我们的大部分知识来自于体外方法,虽然这些方法可以在精确控制条件的同时,却失去了完整细胞中存在的几个调节层次。在这里,我们研究了模型可变剪接外显子侧翼内含子的去除相对顺序。我们发现,在去除上游内含子之前,优先去除位于外显子下游的内含子。最重要的是,调节模型可变剪接事件的顺式作用突变和反式作用因子都能以不同的方式影响去除的相对顺序。然而,转录延伸的减少导致外显子的剪接包含率更高,并不会改变内含子的去除顺序,这表明,根据“先来先服务”模型,即延伸缓慢促进上游内含子优先切除的假设,需要进行修正。我们提出,延伸缓慢有利于在剪接体组装过程中决定外显子的包含。我们的结果表明,测量内含子去除的顺序可能是区分不同可变剪接位点选择机制的一种简单方法。

相似文献

4
Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate.
Genes Dev. 2014 Dec 1;28(23):2663-76. doi: 10.1101/gad.252106.114.
5
The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
Proc Natl Acad Sci U S A. 2005 Nov 8;102(45):16176-81. doi: 10.1073/pnas.0508489102. Epub 2005 Oct 31.
6
In vitro splicing of fibronectin pre-mRNAs.
Nucleic Acids Res. 1990 Jul 25;18(14):4089-97. doi: 10.1093/nar/18.14.4089.
9
10
Identification of intron and exon sequences involved in alternative splicing of insulin receptor pre-mRNA.
J Biol Chem. 1998 Apr 24;273(17):10331-7. doi: 10.1074/jbc.273.17.10331.

引用本文的文献

1
The regulation and function of post-transcriptional RNA splicing.
Nat Rev Genet. 2025 Jun;26(6):378-394. doi: 10.1038/s41576-025-00836-z. Epub 2025 Apr 11.
2
Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing.
Mol Cell. 2024 Oct 3;84(19):3656-3666. doi: 10.1016/j.molcel.2024.08.036.
3
Post-transcriptional splicing can occur in a slow-moving zone around the gene.
Elife. 2024 Apr 5;12:RP91357. doi: 10.7554/eLife.91357.
4
Co-transcriptional gene regulation in eukaryotes and prokaryotes.
Nat Rev Mol Cell Biol. 2024 Jul;25(7):534-554. doi: 10.1038/s41580-024-00706-2. Epub 2024 Mar 20.
5
Cotranscriptional RNA processing and modification in plants.
Plant Cell. 2023 May 29;35(6):1654-1670. doi: 10.1093/plcell/koac309.
6
RNA velocity unraveled.
PLoS Comput Biol. 2022 Sep 12;18(9):e1010492. doi: 10.1371/journal.pcbi.1010492. eCollection 2022 Sep.
7
An Unusual U2AF2 Inhibits Splicing and Attenuates the Virulence of the Human Protozoan Parasite .
Front Cell Infect Microbiol. 2022 Jun 17;12:888428. doi: 10.3389/fcimb.2022.888428. eCollection 2022.
8
R-loops at microRNA encoding loci promote co-transcriptional processing of pri-miRNAs in plants.
Nat Plants. 2022 Apr;8(4):402-418. doi: 10.1038/s41477-022-01125-x. Epub 2022 Apr 21.
9
Differential fates of introns in gene expression due to global alternative splicing.
Hum Genet. 2022 Jan;141(1):31-47. doi: 10.1007/s00439-021-02409-6. Epub 2021 Dec 14.
10
The upstream 5' splice site remains associated to the transcription machinery during intron synthesis.
Nat Commun. 2021 Jul 27;12(1):4545. doi: 10.1038/s41467-021-24774-6.

本文引用的文献

1
Rates of in situ transcription and splicing in large human genes.
Nat Struct Mol Biol. 2009 Nov;16(11):1128-33. doi: 10.1038/nsmb.1666. Epub 2009 Oct 11.
2
Co-transcriptional splicing of constitutive and alternative exons.
RNA. 2009 Oct;15(10):1896-908. doi: 10.1261/rna.1714509. Epub 2009 Aug 5.
4
Modulating alternative splicing by cotranscriptional cleavage of nascent intronic RNA.
RNA. 2008 Feb;14(2):359-66. doi: 10.1261/rna.615508. Epub 2007 Dec 7.
5
The transcriptional cycle of HIV-1 in real-time and live cells.
J Cell Biol. 2007 Oct 22;179(2):291-304. doi: 10.1083/jcb.200706018.
6
In vivo dynamics of RNA polymerase II transcription.
Nat Struct Mol Biol. 2007 Sep;14(9):796-806. doi: 10.1038/nsmb1280. Epub 2007 Aug 5.
7
SR proteins function in coupling RNAP II transcription to pre-mRNA splicing.
Mol Cell. 2007 Jun 22;26(6):867-81. doi: 10.1016/j.molcel.2007.05.036.
8
RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20.
Nat Struct Mol Biol. 2006 Nov;13(11):973-80. doi: 10.1038/nsmb1155. Epub 2006 Oct 8.
9
An exonic splicing silencer represses spliceosome assembly after ATP-dependent exon recognition.
Nat Struct Mol Biol. 2006 Oct;13(10):937-44. doi: 10.1038/nsmb1149. Epub 2006 Sep 24.
10
Breaking barriers to transcription elongation.
Nat Rev Mol Cell Biol. 2006 Aug;7(8):557-67. doi: 10.1038/nrm1981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验