Suppr超能文献

由于全球选择性剪接,内含子在基因表达中的命运不同。

Differential fates of introns in gene expression due to global alternative splicing.

机构信息

Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK.

Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznan, Poland.

出版信息

Hum Genet. 2022 Jan;141(1):31-47. doi: 10.1007/s00439-021-02409-6. Epub 2021 Dec 14.

Abstract

The discovery of introns over four decades ago revealed a new vision of genes and their interrupted arrangement. Throughout the years, it has appeared that introns play essential roles in the regulation of gene expression. Unique processing of excised introns through the formation of lariats suggests a widespread role for these molecules in the structure and function of cells. In addition to rapid destruction, these lariats may linger on in the nucleus or may even be exported to the cytoplasm, where they remain stable circular RNAs (circRNAs). Alternative splicing (AS) is a source of diversity in mature transcripts harboring retained introns (RI-mRNAs). Such RNAs may contain one or more entire retained intron(s) (RIs), but they may also have intron fragments resulting from sequential excision of smaller subfragments via recursive splicing (RS), which is characteristic of long introns. There are many potential fates of RI-mRNAs, including their downregulation via nuclear and cytoplasmic surveillance systems and the generation of new protein isoforms with potentially different functions. Various reports have linked the presence of such unprocessed transcripts in mammals to important roles in normal development and in disease-related conditions. In certain human neurological-neuromuscular disorders, including myotonic dystrophy type 2 (DM2), frontotemporal dementia/amyotrophic lateral sclerosis (FTD/ALS) and Duchenne muscular dystrophy (DMD), peculiar processing of long introns has been identified and is associated with their pathogenic effects. In this review, we discuss different mechanisms involved in the processing of introns during AS and the functions of these large sections of the genome in our biology.

摘要

四十年前,内含子的发现揭示了基因及其间断排列的新视角。多年来,内含子在基因表达调控中发挥重要作用似乎已成定局。通过形成套索结构对切除的内含子进行独特的加工,表明这些分子在细胞的结构和功能中具有广泛的作用。除了快速破坏外,这些套索可能在核内停留,甚至可能被输出到细胞质中,在那里它们保持稳定的环状 RNA(circRNA)。可变剪接(AS)是含有保留内含子(RI-mRNA)的成熟转录本多样性的来源。这些 RNA 可能包含一个或多个完整的保留内含子(RI),但它们也可能具有来自通过递归剪接(RS)连续切除较小亚片段的内含子片段,这是长内含子的特征。RI-mRNA 有许多潜在的命运,包括通过核和细胞质监控系统下调,以及产生具有潜在不同功能的新蛋白同工型。各种报告将哺乳动物中这些未加工转录本的存在与正常发育和与疾病相关条件中的重要作用联系起来。在某些人类神经肌肉疾病中,包括肌强直性营养不良 2 型(DM2)、额颞叶痴呆/肌萎缩侧索硬化症(FTD/ALS)和杜氏肌营养不良症(DMD),已经确定了长内含子的特殊加工,并与它们的致病作用相关。在这篇综述中,我们讨论了 AS 过程中内含子加工涉及的不同机制以及这些基因组大片段在我们生物学中的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30ea/8758631/70167a805ec9/439_2021_2409_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验