Centre for Biomolecular Science, School of Pharmacy, University of Nottingham, Nottingham, UK.
Oncology. 2010;78(2):103-14. doi: 10.1159/000306139. Epub 2010 Mar 31.
Treatment for glioblastoma multiforme includes the alkylating agent temozolomide combined with ionizing radiation. Persistent O6-guanine methylation by temozolomide in O6-methylguanine methyl transferase negative tumors causes cytotoxic lesions recognized by DNA mismatch repair, triggering apoptosis. Resistance (intrinsic or acquired) presents obstacles to successful temozolomide treatment, limiting drug efficacy and life expectancy. Two glioma cell lines, SNB19 and U373, sensitive to temozolomide (GI(50) values 36 and 68 microM, respectively) were exposed to increasing temozolomide concentrations (1-100 microM). Variant cell lines (SNB19VR, U373VR) were generated that displayed acquired temozolomide resistance (GI(50) values 280 and 289 microM, respectively). Cross-resistance to mitozolomide was observed in U373VR cells only. In clonogenic and MTT assays, methylguanine methyltransferase (MGMT) depletion using O6-benzylguanine sensitized U373VR cells to temozolomide, indicating the resistance mechanism involves MGMT re-expression. Indeed, Western blot analyses revealed MGMT protein in cell lysates. In SNB19VR cells, down-regulation of MSH6 message and protein expression may confer temozolomide tolerance. Inhibition of poly(ADP-ribose) polymerase-1 (a key base excision repair (BER) enzyme) partially restored sensitivity, and DNA repair gene arrays demonstrated up-regulation (>5-fold) of BER gene NTL1 in SNB19VR cells. In conclusion, we have developed two glioma cell lines whose distinct mechanisms of acquired resistance to temozolomide, involving expression of MGMT, or inactivation of DNA mismatch repair and recruitment of BER enzymes, are consistent with clinical observations. These cell lines provide valuable models for the development of strategies to combat temozolomide resistance.
多形性胶质母细胞瘤的治疗包括烷基化剂替莫唑胺联合电离辐射。替莫唑胺使 O6-甲基鸟嘌呤甲基转移酶阴性肿瘤中的 O6-鸟嘌呤持续甲基化,导致被 DNA 错配修复识别的细胞毒性损伤,从而引发细胞凋亡。(肿瘤细胞)对替莫唑胺的耐药性(固有或获得性)是成功治疗替莫唑胺的障碍,限制了药物的疗效和患者的预期寿命。两种对替莫唑胺敏感的神经胶质瘤细胞系(SNB19 和 U373)(GI50 值分别为 36 和 68 μM),经替莫唑胺浓度递增处理(1-100 μM),产生了获得性替莫唑胺耐药的细胞系(SNB19VR 和 U373VR)(GI50 值分别为 280 和 289 μM)。仅在 U373VR 细胞中观察到对米托唑胺的交叉耐药性。在集落形成和 MTT 测定中,O6-苯甲基鸟嘌呤(O6-benzylguanine)耗竭甲基鸟嘌呤甲基转移酶(MGMT)使 U373VR 细胞对替莫唑胺敏感,表明耐药机制涉及 MGMT 的重新表达。事实上,Western blot 分析显示细胞裂解物中有 MGMT 蛋白。在 SNB19VR 细胞中,MSH6 信使和蛋白表达的下调可能赋予了替莫唑胺耐受性。聚(ADP-核糖)聚合酶-1(一种关键的碱基切除修复(BER)酶)的抑制部分恢复了敏感性,DNA 修复基因阵列显示 SNB19VR 细胞中 BER 基因 NTL1 的上调(>5 倍)。总之,我们开发了两种神经胶质瘤细胞系,它们对替莫唑胺获得性耐药的不同机制,涉及 MGMT 的表达,或 DNA 错配修复的失活和 BER 酶的募集,与临床观察一致。这些细胞系为开发对抗替莫唑胺耐药性的策略提供了有价值的模型。