Suppr超能文献

芯片上的胶质母细胞瘤构建及治疗应用。

Glioblastoma-on-a-chip construction and therapeutic applications.

作者信息

Xie Zuorun, Chen Maosong, Lian Jiangfang, Wang Hongcai, Ma Jingyun

机构信息

The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China.

出版信息

Front Oncol. 2023 Jul 12;13:1183059. doi: 10.3389/fonc.2023.1183059. eCollection 2023.

Abstract

Glioblastoma (GBM) is the most malignant type of primary intracranial tumor with a median overall survival of only 14 months, a very poor prognosis and a recurrence rate of 90%. It is difficult to reflect the complex structure and function of the GBM microenvironment using traditional models. GBM-on-a-chip platforms can integrate biological or chemical functional units of a tumor into a chip, mimicking functions of GBM cells. This technology has shown great potential for applications in personalized precision medicine and GBM immunotherapy. In recent years, there have been efforts to construct GBM-on-a-chip models based on microfluidics and bioprinting. A number of research teams have begun to use GBM-on-a-chip models for the investigation of GBM progression mechanisms, drug candidates, and therapeutic approaches. This review first briefly discusses the use of microfluidics and bioprinting technologies for GBM-on-a-chip construction. Second, we classify non-surgical treatments for GBM in pre-clinical research into three categories (chemotherapy, immunotherapy and other therapies) and focus on the use of GBM-on-a-chip in research for each category. Last, we demonstrate that organ-on-a-chip technology in therapeutic field is still in its initial stage and provide future perspectives for research directions in the field.

摘要

胶质母细胞瘤(GBM)是原发性颅内肿瘤中最恶性的类型,中位总生存期仅为14个月,预后极差,复发率达90%。使用传统模型难以反映GBM微环境的复杂结构和功能。GBM芯片平台可将肿瘤的生物或化学功能单元整合到芯片中,模拟GBM细胞的功能。该技术在个性化精准医学和GBM免疫治疗应用中显示出巨大潜力。近年来,人们致力于构建基于微流体和生物打印的GBM芯片模型。一些研究团队已开始使用GBM芯片模型来研究GBM的进展机制、候选药物和治疗方法。本综述首先简要讨论微流体和生物打印技术在构建GBM芯片方面的应用。其次,我们将临床前研究中GBM的非手术治疗分为三类(化疗、免疫治疗和其他治疗),并重点关注GBM芯片在各类研究中的应用。最后,我们表明治疗领域的芯片器官技术仍处于初始阶段,并为该领域的研究方向提供了未来展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验