Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
Lab Chip. 2010 Apr 21;10(8):1086-94. doi: 10.1039/b920275g. Epub 2010 Feb 3.
Due to the difficulty of reliably producing sealed 3-D structures, few researchers have tackled the challenges of creating pillar beds suitable for miniaturized liquid phase separation systems. Herein, we describe an original processing sequence for the fabrication of enclosed pillar arrays integrated on a fluidic chip which, we believe, will further stimulate interest in this field. Our approach yields a mechanically robust enclosed pillar system that withstands mechanical impacts commonly incurred during processing, sealing and operation, resulting in a design particularly suitable for the research environment. A combination of a wafer-level fabrication sequence with chip-level elastomer bonding allows for chip reusability, an attractive and cost efficient advancement for research applications. The characteristic features in the implemented highly ordered pillar arrays are scalable to submicron dimensions. The proposed fluidic structures are suitable for handling picolitre sample volumes and offer prospects for substantial improvements in separation efficiency and permeability over traditional packed and monolithic columns. Our experimental observations indicate plate heights as low as 0.76 microm for a 10 mm long pillar bed. Theoretical calculations confirm that ordered pillar arrays with submicron pore sizes combine superior analysis speed, picolitre sample volumes, high permeability and reasonably large plate numbers on a small footprint. In addition, we describe a fluidic interface that provides streamlined coupling of the fabricated structures with off-chip fluidic components.
由于可靠地制造密封的 3D 结构具有一定难度,因此很少有研究人员能够解决适合微型化液相分离系统的支柱床的制造挑战。在此,我们描述了一种用于制造集成在微流控芯片上的封闭支柱阵列的原始处理顺序,我们相信这将进一步激发该领域的研究兴趣。我们的方法得到了一种机械坚固的封闭支柱系统,该系统能够承受在处理、密封和操作过程中通常遇到的机械冲击,从而设计出特别适合研究环境的系统。晶圆级制造顺序与芯片级弹性体键合的组合允许芯片重复使用,这对于研究应用来说是一个有吸引力且具有成本效益的进步。所实现的高度有序的支柱阵列的特征尺寸可扩展到亚微米尺寸。所提出的微流控结构适用于处理皮升级别的样品体积,并有望在传统的填充柱和整体柱的分离效率和渗透性方面取得实质性的提高。我们的实验观察结果表明,对于 10 毫米长的支柱床,板高低至 0.76 微米。理论计算证实,具有亚微米孔径的有序支柱阵列结合了优越的分析速度、皮升级别的样品体积、高渗透性和在小占地面积上合理的大板数。此外,我们还描述了一种微流控接口,该接口提供了制造结构与片外微流控组件的流线型耦合。