Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
Cell Mol Life Sci. 2010 Aug;67(16):2695-715. doi: 10.1007/s00018-010-0344-4. Epub 2010 Apr 1.
Proteins might experience many conformational changes and interactions during their lifetimes, from their synthesis at ribosomes to their controlled degradation. Because, in most cases, only folded proteins are functional, protein folding in bacteria is tightly controlled genetically, transcriptionally, and at the protein sequence level. In addition, important cellular machinery assists the folding of polypeptides to avoid misfolding and ensure the attainment of functional structures. When these redundant protective strategies are overcome, misfolded polypeptides are recruited into insoluble inclusion bodies. The protein embedded in these intracellular deposits might display different conformations including functional and beta-sheet-rich structures. The latter assemblies are similar to the amyloid fibrils characteristic of several human neurodegenerative diseases. Interestingly, bacteria exploit the same structural principles for functional properties such as adhesion or cytotoxicity. Overall, this review illustrates how prokaryotic organisms might provide the bedrock on which to understand the complexity of protein folding and aggregation in the cell.
在其生命过程中,蛋白质可能会经历许多构象变化和相互作用,从核糖体上的合成到受控降解。因为在大多数情况下,只有折叠的蛋白质才具有功能,所以细菌中的蛋白质折叠受到遗传、转录和蛋白质序列水平的严格控制。此外,重要的细胞机制有助于多肽的折叠,以避免错误折叠并确保获得功能性结构。当这些冗余的保护策略被克服时,错误折叠的多肽被招募到不溶性包涵体中。嵌入这些细胞内沉积物中的蛋白质可能会呈现不同的构象,包括具有功能和富含β-折叠的结构。后者的组装类似于几种人类神经退行性疾病的特征性淀粉样纤维。有趣的是,细菌利用相同的结构原则来实现粘附或细胞毒性等功能特性。总的来说,这篇综述说明了原核生物如何为理解细胞中蛋白质折叠和聚集的复杂性提供基础。