Suppr超能文献

液-液相分离:揭开微生物细胞中生物分子凝聚物的谜团

Liquid-Liquid Phase Separation: Unraveling the Enigma of Biomolecular Condensates in Microbial Cells.

作者信息

Gao Zixu, Zhang Wenchang, Chang Runlei, Zhang Susu, Yang Guiwen, Zhao Guoyan

机构信息

College of Life Science, Shandong Normal University, Jinan, China.

出版信息

Front Microbiol. 2021 Oct 25;12:751880. doi: 10.3389/fmicb.2021.751880. eCollection 2021.

Abstract

Numerous examples of microbial phase-separated biomolecular condensates have now been identified following advances in fluorescence imaging and single molecule microscopy technologies. The structure, function, and potential applications of these microbial condensates are currently receiving a great deal of attention. By neatly compartmentalizing proteins and their interactors in membrane-less organizations while maintaining free communication between these macromolecules and the external environment, microbial cells are able to achieve enhanced metabolic efficiency. Typically, these condensates also possess the ability to rapidly adapt to internal and external changes. The biological functions of several phase-separated condensates in small bacterial cells show evolutionary convergence with the biological functions of their eukaryotic paralogs. Artificial microbial membrane-less organelles are being constructed with application prospects in biocatalysis, biosynthesis, and biomedicine. In this review, we provide an overview of currently known biomolecular condensates driven by liquid-liquid phase separation (LLPS) in microbial cells, and we elaborate on their biogenesis mechanisms and biological functions. Additionally, we highlight the major challenges and future research prospects in studying microbial LLPS.

摘要

随着荧光成像和单分子显微镜技术的进步,现已鉴定出许多微生物相分离生物分子凝聚物的例子。这些微生物凝聚物的结构、功能和潜在应用目前正受到广泛关注。通过在无膜结构中巧妙地分隔蛋白质及其相互作用分子,同时保持这些大分子与外部环境之间的自由交流,微生物细胞能够提高代谢效率。通常,这些凝聚物还具有快速适应内部和外部变化的能力。几种小细菌细胞中相分离凝聚物的生物学功能与其真核同源物的生物学功能表现出进化趋同。人工微生物无膜细胞器正在构建中,在生物催化、生物合成和生物医学方面具有应用前景。在这篇综述中,我们概述了目前已知的由微生物细胞中的液-液相分离(LLPS)驱动的生物分子凝聚物,并详细阐述了它们的生物发生机制和生物学功能。此外,我们强调了研究微生物LLPS的主要挑战和未来研究前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74c5/8573418/02c968e57b44/fmicb-12-751880-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验