Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
J Am Chem Soc. 2010 Apr 28;132(16):5662-71. doi: 10.1021/ja100250d.
Synthetic explorations in the CaAu(5)-CaAu(4)Bi-BiAu(2) system at 400 degrees C reveal five separate solid solution regions that show three distinct substitution patterns in the CaAu(5) parent: (I) CaAu(4)(Au(1-m)Bi(m)) with 0 < or = m < or = 0.15(1), (II) 0.33(1) < or = m < or = 0.64(1), (III) 0.85(4) < or = m < or = 0.90(2); (IV) (Ca(1-r)Au(r))Au(4)(Bi(1-s)Au(s)) with 0 < or = r < or = 0.39(1) and 0 < or = s < or = 0.12(2); (V) (Ca(1-p-q)Au(p)Bi(q))Au(4)Bi with 0.09(2) < or = p < or = 0.13(1) and 0.31(2) < or = q < or = 0.72(4). Single crystal X-ray studies establish that all of these phase regions have common cubic symmetry F43m and that their structures (MgCu(4)Sn-type, an ordered derivative of MgCu(2)) all feature three-dimensional networks of Au(4) tetrahedra, in which the truncated tetrahedra are centered and capped by Ca/Au, Au/Bi, or Ca/Au/Bi mixtures to give 16-atom Friauf polyhedra. TB-LMTO-ASA and -COHP calculations also reveal that direct interactions between Ca-Au and Ca-Bi pairs of atoms are relatively weak and that the Bi-Au interactions in the unstable ideal CaAu(4)Bi are antibonding in character at E(F) but that their bonding is optimized at +/-1 e. Compositions between the five nonstoichiometric phases appear to undergo spinodal decompositions. The last phenomenon has been confirmed by HRTEM, STEM-HAADF, EPMA, and XRD studies of the nominal composition CaAu(4.25)Bi(0.75). Its DTA analyses suggest that the phases resulting from spinodal decomposition have nearly the same melting point (approximately 807 degrees C), as expected, and that they are interconvertible through peritectic reactions at approximately 717 degrees C.
在 400°C 下对 CaAu(5)-CaAu(4)Bi-BiAu(2) 体系进行的综合研究揭示了五个独立的固溶区,在 CaAu(5)母体中表现出三种不同的取代模式:(I)CaAu(4)(Au(1-m)Bi(m)),其中 0<m≤0.15(1);(II)0.33(1)≤m≤0.64(1);(III)0.85(4)≤m≤0.90(2);(IV)(Ca(1-r)Au(r))Au(4)(Bi(1-s)Au(s)),其中 0<r≤0.39(1)且 0<s≤0.12(2);(V)(Ca(1-p-q)Au(p)Bi(q))Au(4)Bi,其中 0.09(2)≤p≤0.13(1)且 0.31(2)≤q≤0.72(4)。单晶 X 射线研究确定,所有这些相区都具有共同的立方 F43m 对称性,它们的结构(MgCu(4)Sn 型,MgCu(2)的有序衍生物)都具有 Au(4)四面体的三维网络,其中截顶四面体由 Ca/Au、Au/Bi 或 Ca/Au/Bi 混合物居中并封顶,形成 16 原子 Friauf 多面体。TB-LMTO-ASA 和 -COHP 计算还表明,Ca-Au 和 Ca-Bi 原子对之间的直接相互作用相对较弱,不稳定理想 CaAu(4)Bi 中的 Bi-Au 相互作用在 E(F)处具有反键性质,但在 +/-1e 处具有最佳键合。五个非化学计量相之间的成分似乎经历了旋节分解。最后一种现象已通过 HRTEM、STEM-HAADF、EPMA 和 XRD 对名义组成 CaAu(4.25)Bi(0.75)的研究得到证实。其 DTA 分析表明,旋节分解产生的相具有几乎相同的熔点(约 807°C),正如预期的那样,并且它们可以通过大约 717°C 的包晶反应相互转化。