Suppr超能文献

心脏转录调控因子的体内功能分析的深度 mRNA 测序:Galphaq 的应用。

Deep mRNA sequencing for in vivo functional analysis of cardiac transcriptional regulators: application to Galphaq.

机构信息

Department of Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St Louis, Mo 63110, USA.

出版信息

Circ Res. 2010 May 14;106(9):1459-67. doi: 10.1161/CIRCRESAHA.110.217513. Epub 2010 Apr 1.

Abstract

RATIONALE

Transcriptional profiling can detect subclinical heart disease and provide insight into disease etiology and functional status. Current microarray-based methods are expensive and subject to artifact.

OBJECTIVE

To develop RNA sequencing methodologies using next generation massively parallel platforms for high throughput comprehensive analysis of individual mouse cardiac transcriptomes. To compare the results of sequencing- and array-based transcriptional profiling in the well-characterized Galphaq transgenic mouse hypertrophy/cardiomyopathy model.

METHODS AND RESULTS

The techniques for preparation of individually bar-coded mouse heart RNA libraries for Illumina Genome Analyzer II resequencing are described. RNA sequencing showed that 234 high-abundance transcripts (>60 copies/cell) comprised 55% of total cardiac mRNA. Parallel transcriptional profiling of Galphaq transgenic and nontransgenic hearts by Illumina RNA sequencing and Affymetrix Mouse Gene 1.0 ST arrays revealed superior dynamic range for mRNA expression and enhanced specificity for reporting low-abundance transcripts by RNA sequencing. Differential mRNA expression in Galphaq and nontransgenic hearts correlated well between microarrays and RNA sequencing for highly abundant transcripts. RNA sequencing was superior to arrays for accurately quantifying lower-abundance genes, which represented the majority of the regulated genes in the Galphaq transgenic model.

CONCLUSIONS

RNA sequencing is rapid, accurate, and sensitive for identifying both abundant and rare cardiac transcripts, and has significant advantages in time- and cost-efficiencies over microarray analysis.

摘要

理由

转录谱分析可以检测亚临床心脏病,并深入了解疾病的病因和功能状态。目前基于微阵列的方法昂贵且容易出现假象。

目的

开发使用下一代大规模平行平台的 RNA 测序方法,用于高通量综合分析单个小鼠心脏转录组。比较测序和基于阵列的转录谱分析在特征明确的 Galphaq 转基因小鼠肥大/心肌病模型中的结果。

方法和结果

描述了用于 Illumina Genome Analyzer II 重测序的单独条形码标记的小鼠心脏 RNA 文库制备技术。RNA 测序显示,234 种高丰度转录本(>60 个拷贝/细胞)占总心脏 mRNA 的 55%。通过 Illumina RNA 测序和 Affymetrix Mouse Gene 1.0 ST 阵列对 Galphaq 转基因和非转基因心脏进行平行转录谱分析,显示出 mRNA 表达的动态范围更大,并且 RNA 测序对报告低丰度转录本的特异性更高。Galphaq 和非转基因心脏之间的差异 mRNA 表达在微阵列和 RNA 测序之间高度丰富的转录本相关性良好。RNA 测序在准确量化低丰度基因方面优于微阵列,这些基因代表了 Galphaq 转基因模型中大多数受调控的基因。

结论

RNA 测序快速、准确且敏感,可识别丰富和稀有心脏转录本,与微阵列分析相比,在时间和成本效率方面具有显著优势。

相似文献

9
Cardiac remodeling in Gαq and Gα11 knockout mice.Gαq和Gα11基因敲除小鼠的心脏重塑
Int J Cardiol. 2016 Jan 1;202:836-45. doi: 10.1016/j.ijcard.2015.10.069. Epub 2015 Oct 9.

引用本文的文献

3
Diversity of cells and signals in the cardiovascular system.心血管系统中的细胞和信号的多样性。
J Physiol. 2023 Jul;601(13):2547-2592. doi: 10.1113/JP284011. Epub 2023 Feb 16.
4
Neurohormonal connections with mitochondria in cardiomyopathy and other diseases.神经激素与心肌病和其他疾病中线粒体的联系。
Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C461-C477. doi: 10.1152/ajpcell.00167.2022. Epub 2022 Jun 27.
9
Whole blood gene expression and white matter Hyperintensities.全血基因表达与脑白质高信号。
Mol Neurodegener. 2017 Sep 18;12(1):67. doi: 10.1186/s13024-017-0209-5.

本文引用的文献

4
Cardiac ankyrins in health and disease.健康与疾病中的心脏锚蛋白
J Mol Cell Cardiol. 2009 Aug;47(2):203-9. doi: 10.1016/j.yjmcc.2009.04.010. Epub 2009 Apr 24.
5
TopHat: discovering splice junctions with RNA-Seq.TopHat:利用RNA测序发现剪接接头
Bioinformatics. 2009 May 1;25(9):1105-11. doi: 10.1093/bioinformatics/btp120. Epub 2009 Mar 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验