Bioinformatic Plateau IFR150, INSERM, Toulouse, France.
EMBO J. 2010 Apr 21;29(8):1446-57. doi: 10.1038/emboj.2010.38. Epub 2010 Apr 1.
Chromatin acts as a key regulator of DNA-related processes such as DNA damage repair. Although ChIP-chip is a powerful technique to provide high-resolution maps of protein-genome interactions, its use to study DNA double strand break (DSB) repair has been hindered by the limitations of the available damage induction methods. We have developed a human cell line that permits induction of multiple DSBs randomly distributed and unambiguously positioned within the genome. Using this system, we have generated the first genome-wide mapping of gammaH2AX around DSBs. We found that all DSBs trigger large gammaH2AX domains, which spread out from the DSB in a bidirectional, discontinuous and not necessarily symmetrical manner. The distribution of gammaH2AX within domains is influenced by gene transcription, as parallel mappings of RNA Polymerase II and strand-specific expression showed that gammaH2AX does not propagate on active genes. In addition, we showed that transcription is accurately maintained within gammaH2AX domains, indicating that mechanisms may exist to protect gene transcription from gammaH2AX spreading and from the chromatin rearrangements induced by DSBs.
染色质作为 DNA 相关过程(如 DNA 损伤修复)的关键调节剂。虽然 ChIP-chip 是提供蛋白质-基因组相互作用高分辨率图谱的强大技术,但由于可用的损伤诱导方法的限制,其用于研究 DNA 双链断裂(DSB)修复的应用受到了阻碍。我们开发了一种人细胞系,该细胞系允许在基因组内随机分布且位置明确的多个 DSB 的诱导。使用该系统,我们生成了第一个全基因组范围内围绕 DSB 的 γH2AX 作图。我们发现所有 DSB 都会触发大的 γH2AX 结构域,这些结构域从 DSB 以双向、不连续且不一定对称的方式向外扩展。γH2AX 在结构域内的分布受基因转录的影响,因为 RNA 聚合酶 II 的平行作图和链特异性表达表明 γH2AX 不会在活性基因上传播。此外,我们还表明,转录在 γH2AX 结构域内被准确维持,表明可能存在机制来保护基因转录免受 γH2AX 传播以及 DSB 诱导的染色质重排的影响。