Suppr超能文献

一种鸣禽的基因组。

The genome of a songbird.

机构信息

The Genome Center, Washington University School of Medicine, Campus Box 8501, 4444 Forest Park Avenue, St Louis, Missouri 63108, USA.

出版信息

Nature. 2010 Apr 1;464(7289):757-62. doi: 10.1038/nature08819.

Abstract

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.

摘要

斑胸草雀是几个领域的重要模式生物,与人类神经科学有独特的相关性。与其他鸣禽一样,斑胸草雀通过学习发声来进行交流,这种能力在人类和其他少数几种动物中得到了证实,而在鸡(直到现在唯一具有测序基因组的鸟类)中却没有。在这里,我们对斑胸草雀(Taeniopygia guttata)的基因组序列进行了结构、功能和比较分析,斑胸草雀是一种鸣禽,属于大型鸟类目雀形目。我们发现,基因组的整体结构在斑胸草雀和鸡中相似,但在许多染色体内重排、谱系特异性基因家族扩张、长末端重复逆转录转座子数量以及性染色体剂量补偿机制方面存在差异。我们表明,歌曲行为使斑马雀大脑中的基因调控网络参与其中,改变了长非编码 RNA、microRNAs、转录因子及其靶基因的表达。我们还为在鸣禽谱系中与歌曲体验过程中受调控的基因的快速分子进化提供了证据。这些结果表明,基因组在发声交流的神经过程中积极参与,并确定了这种行为进化和调控的潜在遗传基础。

相似文献

1
The genome of a songbird.
Nature. 2010 Apr 1;464(7289):757-62. doi: 10.1038/nature08819.
6
The zebra finch neuropeptidome: prediction, detection and expression.
BMC Biol. 2010 Apr 1;8:28. doi: 10.1186/1741-7007-8-28.
7
Molecular evolution of genes in avian genomes.
Genome Biol. 2010;11(6):R68. doi: 10.1186/gb-2010-11-6-r68. Epub 2010 Jun 23.
8
Accelerated evolution of PAK3- and PIM1-like kinase gene families in the zebra finch, Taeniopygia guttata.
Mol Biol Evol. 2010 Aug;27(8):1923-34. doi: 10.1093/molbev/msq080. Epub 2010 Mar 17.
9
Comparison of the chicken and zebra finch Z chromosomes shows evolutionary rearrangements.
Chromosome Res. 2006;14(8):805-15. doi: 10.1007/s10577-006-1082-1. Epub 2007 Jan 19.
10
The zebra finch, Taeniopygia guttata: an avian model for investigating the neurobiological basis of vocal learning.
Cold Spring Harb Protoc. 2014 Oct 23;2014(12):1237-42. doi: 10.1101/pdb.emo084574.

引用本文的文献

2
GSK3α negatively regulates GSK3β by decreasing its protein levels and enzymatic activity in mouse embryonic stem cells.
Stem Cell Reports. 2025 Jul 8;20(7):102512. doi: 10.1016/j.stemcr.2025.102512. Epub 2025 Jun 5.
4
Parallel and convergent evolution in genes underlying seasonal migration.
Evol Lett. 2024 Nov 30;9(2):189-208. doi: 10.1093/evlett/qrae064. eCollection 2025 Apr.
5
Genomic insights and the conservation potential of captive breeding: The case of Chinese alligator.
Sci Adv. 2025 Apr 4;11(14):eadm7980. doi: 10.1126/sciadv.adm7980. Epub 2025 Apr 2.
6
Island size shapes genomic diversity in a great speciator (Aves: ).
Biol Lett. 2025 Mar;21(3):20240692. doi: 10.1098/rsbl.2024.0692. Epub 2025 Mar 5.
7
The lungs of the finch: three-dimensional pulmonary anatomy of the zebra finch ().
Philos Trans R Soc Lond B Biol Sci. 2025 Feb 27;380(1920):20230420. doi: 10.1098/rstb.2023.0420.
8
Comparative population pangenomes reveal unexpected complexity and fitness effects of structural variants.
bioRxiv. 2025 Feb 13:2025.02.11.637762. doi: 10.1101/2025.02.11.637762.
9
Characterization and distribution of de novo mutations in the zebra finch.
Commun Biol. 2024 Oct 2;7(1):1243. doi: 10.1038/s42003-024-06945-5.
10
Trait Variation and Spatiotemporal Dynamics across Avian Secondary Contact Zones.
Biology (Basel). 2024 Aug 22;13(8):643. doi: 10.3390/biology13080643.

本文引用的文献

1
Neural mechanisms for learned birdsong.
Learn Mem. 2009 Oct 22;16(11):655-69. doi: 10.1101/lm.1065209. Print 2009 Nov.
2
Transgenic songbirds offer an opportunity to develop a genetic model for vocal learning.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17963-7. doi: 10.1073/pnas.0909139106. Epub 2009 Oct 7.
3
Integrating genomes, brain and behavior in the study of songbirds.
Curr Biol. 2009 Sep 29;19(18):R865-73. doi: 10.1016/j.cub.2009.07.006.
4
Discrete molecular states in the brain accompany changing responses to a vocal signal.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11364-9. doi: 10.1073/pnas.0812998106. Epub 2009 Jun 18.
5
Neurosteroid production in the songbird brain: a re-evaluation of core principles.
Front Neuroendocrinol. 2009 Aug;30(3):302-14. doi: 10.1016/j.yfrne.2009.05.001. Epub 2009 May 13.
6
Birdsong "transcriptomics": neurochemical specializations of the oscine song system.
PLoS One. 2008;3(10):e3440. doi: 10.1371/journal.pone.0003440. Epub 2008 Oct 20.
7
Habituation in songbirds.
Neurobiol Learn Mem. 2009 Sep;92(2):183-8. doi: 10.1016/j.nlm.2008.09.009. Epub 2008 Oct 25.
8
A phylogenomic study of birds reveals their evolutionary history.
Science. 2008 Jun 27;320(5884):1763-8. doi: 10.1126/science.1157704.
10
A bird's-eye view of sex chromosome dosage compensation.
Annu Rev Genomics Hum Genet. 2008;9:109-27. doi: 10.1146/annurev.genom.9.081307.164220.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验