Papaefthymiou Georgia C
Department of Physics, Villanova University, Villanova PA, USA.
Biochim Biophys Acta. 2010 Aug;1800(8):886-97. doi: 10.1016/j.bbagen.2010.03.018. Epub 2010 Apr 2.
Mössbauer and magnetization measurements, singly or in combination, extract detailed information on the microscopic or internal magnetism of iron-based materials and their macroscopic or bulk magnetization. The combination of the two techniques affords a powerful investigatory probe into spin relaxation processes of nanosize magnetic systems. The ferritin core constitutes a paradigm of such nano-magnetic system where Mössbauer and magnetization studies have been broadly combined in order to elucidate its composition, the initial steps of iron nucleation and biomineralization, particle growth and core-size distribution. In vivo produced and in vitro reconstituted wild-type and variant ferritins have been extensively studied in order to elucidate structure/function correlations and ferritin's role in iron overloading or neurodegenerative disorders.
Studies on the initial stages of iron biomineralization, biomimetic synthetic analogues and ferrous ion retention within the ferritin core are presented. The dynamical magnetic properties of ferritin by Mössbauer and magnetization measurements are critically reviewed. The focus is on experiments that reveal the internal magnetic structure of the ferritin core. Novel magnetic measurements on individual ferritin molecules via AFM and nanoSQUID investigations are also mentioned.
A complex two-phase spin system is revealed due to finite-size effects and non-compensated spins at the surface of the anti-ferromagnetic ferritin core. Below the blocking temperature surface spins participate in relaxation processes much faster than those associated with collective magnetic excitations of interior spins.
The studies reviewed contribute uniquely to the elucidation of the spin-structure and spin-dynamics of anti-ferromagnetic nanolattices and their possible applications to nano/bio-technology.
穆斯堡尔谱和磁化测量单独或联合使用,可获取有关铁基材料微观或内部磁性及其宏观或体磁化强度的详细信息。这两种技术的结合为研究纳米磁性系统的自旋弛豫过程提供了一个强大的探测手段。铁蛋白核心构成了这样一种纳米磁性系统的范例,在该系统中,穆斯堡尔谱和磁化研究已广泛结合,以阐明其组成、铁成核和生物矿化的初始步骤、颗粒生长和核心尺寸分布。为了阐明结构/功能关系以及铁蛋白在铁过载或神经退行性疾病中的作用,对体内产生和体外重构的野生型和变体铁蛋白进行了广泛研究。
介绍了关于铁生物矿化初始阶段、仿生合成类似物以及铁离子在铁蛋白核心内保留的研究。对通过穆斯堡尔谱和磁化测量得到的铁蛋白动态磁性特性进行了批判性综述。重点是揭示铁蛋白核心内部磁性结构的实验。还提到了通过原子力显微镜(AFM)和纳米超导量子干涉装置(nanoSQUID)对单个铁蛋白分子进行新的磁性测量。
由于反铁磁铁蛋白核心表面的有限尺寸效应和未补偿自旋,揭示了一个复杂的两相自旋系统。在阻塞温度以下,表面自旋参与弛豫过程的速度比与内部自旋的集体磁激发相关的弛豫过程快得多。
所综述的研究对阐明反铁磁纳米晶格的自旋结构和自旋动力学及其在纳米/生物技术中的可能应用具有独特贡献。