C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, The Netherlands.
Department of Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands.
Phys Chem Chem Phys. 2023 Oct 18;25(40):27694-27717. doi: 10.1039/d3cp01358h.
Ferritin, the major iron storage protein in organisms, stores iron in the form of iron oxyhydroxide most likely involving phosphorous as a constituent, the mineral form of which is not well understood. Therefore, the question of how the 2000 iron atoms in the ferritin core are magnetically coupled is still largely open. The ferritin core, with a diameter of 5-8 nm, is encapsulated in a protein shell that also catalyzes the uptake of iron and protects the core from outside interactions. Neurodegenerative disease is associated with iron imbalance, generating specific interest in the magnetic properties of ferritin. Here we present 9 GHz continuous wave EPR and a comprehensive set of magnetometry techniques including isothermal remanent magnetization (IRM) and AC susceptibility to elucidate the magnetic properties of the core of human liver ferritin. For the analysis of the magnetometry data, a new microscopic model of the ferritin-core spin structure is derived, showing that magnetic moment is generated by surface-spin canting, rather than defects. The analysis explicitly includes the distribution of magnetic parameters, such as the distribution of the magnetic moment. This microscopic model explains some of the inconsistencies resulting from previous analysis approaches. The main findings are a mean magnetic moment of 337 with a standard deviation of 0.947. In contrast to previous reports, only a relatively small contribution of paramagnetic and ferrimagnetic phases is found, in the order of maximally 3%. For EPR, the over 30 mT wide signal of the ferritin core is analyzed using the model of the giant spin system [Fittipaldi , , 2016, , 3591-3597]. Two components are needed minimally, and the broadening of these components suggests a broad distribution of the magnetic resonance parameters, the zero-field splitting, , and the spin quantum number, . We compare parameters from EPR and magnetometry and find that EPR is particularly sensitive to the surface spins of the core, revealing the potential to use EPR as a diagnostic for surface-spin disorder.
铁蛋白是生物体内主要的铁储存蛋白,以铁氧羟化物的形式储存铁,其中可能含有磷作为组成部分,其矿物形式尚未得到很好的理解。因此,铁蛋白核心中 2000 个铁原子如何发生磁耦合的问题仍然很大程度上没有答案。铁蛋白核心的直径为 5-8nm,被包裹在一个蛋白质壳中,该壳还催化铁的摄取并保护核心免受外部相互作用的影响。神经退行性疾病与铁失衡有关,这引起了人们对铁蛋白磁性特性的特殊兴趣。在这里,我们展示了 9GHz 连续波 EPR 和一组全面的磁测量技术,包括等温剩余磁化(IRM)和交流磁化率,以阐明人肝铁蛋白核心的磁性特性。为了分析磁测量数据,我们推导出了一个新的铁蛋白核心自旋结构的微观模型,表明磁矩是由表面自旋倾斜产生的,而不是由缺陷产生的。该分析明确包括了磁性参数的分布,例如磁矩的分布。这个微观模型解释了一些由以前的分析方法引起的不一致性。主要发现是平均磁矩为 337,标准偏差为 0.947。与以前的报告相反,只发现了相对较小的顺磁相与亚铁磁相的贡献,最大约为 3%。对于 EPR,使用巨自旋系统模型[Fittipaldi,, 2016,, 3591-3597]分析铁蛋白核心超过 30mT 宽的信号。至少需要两个分量,这些分量的展宽表明磁共振参数、零场分裂、、和自旋量子数、的分布很宽。我们比较了 EPR 和磁测量的参数,发现 EPR 对核心表面的自旋特别敏感,这表明 EPR 有可能成为表面自旋无序的诊断方法。