Suppr超能文献

延伸的N-硫酸化结构域位于硫酸乙酰肝素链的非还原端。

Extended N-sulfated domains reside at the nonreducing end of heparan sulfate chains.

作者信息

Staples Gregory O, Shi Xiaofeng, Zaia Joseph

机构信息

Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, USA.

出版信息

J Biol Chem. 2010 Jun 11;285(24):18336-43. doi: 10.1074/jbc.M110.101592. Epub 2010 Apr 2.

Abstract

Heparan sulfate (HS) serves as a cell-surface co-receptor for growth factors, morphogens, and chemokines. These HS and protein binding events depend on the fine structure and distribution of domains along an HS chain. A given domain can vary in terms of uronic acid epimer, N- and O-sulfate, and N-acetate content. The most highly sulfated regions of HS chains, N-sulfated (NS) domains, play prominent roles in HS and protein binding. We have analyzed HS oligosaccharides from various mammalian sources and provide evidence that NS domains residing at the nonreducing end (NRE) are, on average, longer than those residing in the internal regions of the chain. Additionally, they are more highly sulfated than their internal counterparts. These features are independent of the sulfation pattern of the bulk HS chains. From disaccharide analysis, it is clear that NS domains do not always occupy HS NREs. However, when they do, they tend to terminate in a subset of N-sulfated disaccharides. Our observations are consistent with a significant role of NRE NS domains in HS-growth factor interactions.

摘要

硫酸乙酰肝素(HS)作为生长因子、形态发生素和趋化因子的细胞表面共受体。这些HS与蛋白质的结合事件取决于HS链上结构域的精细结构和分布。特定结构域在糖醛酸差向异构体、N - 和O - 硫酸盐以及N - 乙酸盐含量方面可能会有所不同。HS链中硫酸化程度最高的区域,即N - 硫酸化(NS)结构域,在HS与蛋白质结合中起着重要作用。我们分析了来自各种哺乳动物来源的HS寡糖,并提供证据表明位于非还原端(NRE)的NS结构域平均比位于链内部区域的NS结构域更长。此外,它们的硫酸化程度比其内部对应物更高。这些特征与大量HS链的硫酸化模式无关。通过二糖分析可知,NS结构域并不总是占据HS的NRE。然而,当它们占据时,往往以一部分N - 硫酸化二糖结尾。我们的观察结果与NRE NS结构域在HS - 生长因子相互作用中的重要作用一致。

相似文献

1
Extended N-sulfated domains reside at the nonreducing end of heparan sulfate chains.
J Biol Chem. 2010 Jun 11;285(24):18336-43. doi: 10.1074/jbc.M110.101592. Epub 2010 Apr 2.
3
Liver heparan sulfate structure. A novel molecular design.
J Biol Chem. 1994 Apr 15;269(15):11208-15.
6
Role of 6-O-sulfated heparan sulfate in chronic renal fibrosis.
J Biol Chem. 2014 Jul 18;289(29):20295-306. doi: 10.1074/jbc.M114.554691. Epub 2014 May 30.
7
Sequencing Heparan Sulfate Using HILIC LC-NETD-MS/MS.
Anal Chem. 2019 Sep 17;91(18):11738-11746. doi: 10.1021/acs.analchem.9b02313. Epub 2019 Aug 29.
9
Synthesis of 3--Sulfated Disaccharide and Tetrasaccharide Standards for Compositional Analysis of Heparan Sulfate.
Biochemistry. 2020 Sep 1;59(34):3186-3192. doi: 10.1021/acs.biochem.9b00838. Epub 2019 Oct 23.

引用本文的文献

1
A glycomic workflow for LC-MS/MS analysis of urine glycosaminoglycan biomarkers in mucopolysaccharidoses.
Glycoconj J. 2023 Oct;40(5):523-540. doi: 10.1007/s10719-023-10128-5. Epub 2023 Jul 18.
3
Characterization of Glycosaminoglycans in Gaping and Intact Connective Tissues of Farmed Atlantic Salmon () Fillets by Mass Spectrometry.
ACS Omega. 2019 Sep 9;4(13):15337-15347. doi: 10.1021/acsomega.9b01136. eCollection 2019 Sep 24.
4
Proteomics, Glycomics, and Glycoproteomics of Matrisome Molecules.
Mol Cell Proteomics. 2019 Nov;18(11):2138-2148. doi: 10.1074/mcp.R119.001543. Epub 2019 Aug 30.
5
Sequencing of glycosaminoglycans with potential to interrogate sequence-specific interactions.
Sci Rep. 2017 Nov 1;7(1):14785. doi: 10.1038/s41598-017-15009-0.
7
An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure.
Glycoconj J. 2017 Feb;34(1):107-117. doi: 10.1007/s10719-016-9734-7. Epub 2016 Oct 22.
8
Fell-Muir Lecture: Heparan sulphate and the art of cell regulation: a polymer chain conducts the protein orchestra.
Int J Exp Pathol. 2015 Aug;96(4):203-31. doi: 10.1111/iep.12135. Epub 2015 Jul 15.
9
Heparan sulfate differences in rheumatoid arthritis versus healthy sera.
Matrix Biol. 2014 Nov;40:54-61. doi: 10.1016/j.matbio.2014.08.016. Epub 2014 Sep 11.
10
Recent advances in cellular glycomic analyses.
Biomolecules. 2013 Feb 21;3(1):198-225. doi: 10.3390/biom3010198.

本文引用的文献

3
Organ-specific heparan sulfate structural phenotypes.
J Biol Chem. 2009 May 1;284(18):11806-14. doi: 10.1074/jbc.M809637200. Epub 2009 Feb 25.
4
Heparan sulfate-modulated, metalloprotease-mediated sonic hedgehog release from producing cells.
J Biol Chem. 2009 Mar 20;284(12):8013-22. doi: 10.1074/jbc.M806838200. Epub 2009 Jan 27.
5
A chip-based amide-HILIC LC/MS platform for glycosaminoglycan glycomics profiling.
Proteomics. 2009 Feb;9(3):686-95. doi: 10.1002/pmic.200701008.
7
Heparin/heparan sulfate biosynthesis: processive formation of N-sulfated domains.
J Biol Chem. 2008 Jul 18;283(29):20008-14. doi: 10.1074/jbc.M801652200. Epub 2008 May 16.
9
Evidence that heparin saccharides promote FGF2 mitogenesis through two distinct mechanisms.
J Biol Chem. 2008 May 9;283(19):13001-8. doi: 10.1074/jbc.M704531200. Epub 2008 Feb 14.
10
Contribution of EXT1, EXT2, and EXTL3 to heparan sulfate chain elongation.
J Biol Chem. 2007 Nov 9;282(45):32802-10. doi: 10.1074/jbc.M703560200. Epub 2007 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验